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We analyze the configurational excitation of a cluster for both a microcanonical and a canonical
ensemble of atoms and apply this analysis to the Lennard-Jones cluster of 13 atoms. Dividing the
cluster excitations into configurational and thermal classes, we evaluate the anharmonicity
coefficient of atomic vibrations and the entropy jump as a function of temperature on the basis of
computer simulations of the Lennard-Jones 13-atom cluster as a canonical and a microcanonical
ensemble of atoms. This analysis shows the role of anharmonicity of atomic vibrations and exhibits
the importance of the temperature dependence of the entropy jump in the range of phase coexistence
for cluster thermodynamics. © 2009 American Institute of Physics. �DOI: 10.1063/1.3050352�

I. INTRODUCTION

Thermodynamic concepts were formulated for macro-
scopic systems consisting of many elements, typically iden-
tical or of a few kinds.1,2 However, one cannot expect that
these concepts will be entirely suitable for small clusters
consisting of small numbers of atoms. Nevertheless, our ex-
perience in the analysis of small clusters3,4 exhibits the
adaptability of thermodynamic concepts to small clusters.
This experience follows in large part from the analysis of
computer simulations. The most striking property distin-
guishing clusters from bulk matter is their dynamic phase
coexistence.5–9 This means that such systems have a
temperature-pressure domain of coexistence, in which, part
of the time, the cluster resides in one aggregate state and, the
remainder, in the other �in a two-phase domain; there can be
other domains with more coexisting phases�.

This separation of cluster states into different aggregate
states is based on a thermodynamic description despite its
seeming inconsistency with conventional expectations for
bulk systems. However, this behavior is well validated by
computer simulations of clusters by careful theoretical analy-
sis and now by experimental observations. The simulations
lead us to a model of cluster behavior that is now the basis of
our understanding of cluster properties.

This understanding follows from the analysis of cluster
evolution in a many-dimensional space of atomic coordi-
nates, most easily understood if we consider atoms to be
classical. �This is well justified for clusters of argon atoms
and other heavier species; obviously it is not adequate to
describe helium clusters.10� Then each atomic configuration
corresponds to a specific point in this space, and we consider
cluster evolution as the motion of a point in this configura-
tion space along the potential energy surface �PES� that re-
sults from the interactions between individual atoms. The
potential surfaces of clusters with pairwise atomic interaction
have a great many local minima.3,11–15 In particular, for
Lennard-Jones clusters, the number of geometrically distinct

local minima of the PES rises roughly exponentially with the
number n of component atoms to become of order of 1000
even for n of 13.3,11,16 There are, of course, roughly n! per-
mutational isomers of each of those structural forms. As a
cluster evolves, a typical residence time near a given local
minimum considerably exceeds a typical oscillation time.
This allows one to treat the residence in the basin around
each local minimum as a specific configurational excitation
state, albeit transient. These residence times are long enough
for the vibrations to equilibrate thermally, quite independent
of whether the distribution of occupied structures corre-
sponds to a thermal distribution.17 In this way we separate
the vibrational and configurational degrees of freedom of the
cluster atoms. We may or may not be able to assign an ef-
fective temperature to the configurational degrees of
freedom—a matter not particularly relevant here—but it is
important that we can associate a temperature with the vibra-
tional degrees of freedom and suppose a quasiequilibrium
condition for a cluster when it is in the region around a local
minimum. This aspect of cluster evolution is the basis of our
treatment. In the following, we shall sometimes use conven-
tional units, especially when dealing with a specific illustra-
tive system, but in several cases, for generality we express
energies and temperatures in units of the binding or dissocia-
tion energy D of a pair of the atoms. Strictly, in those situa-
tions, we use kT as the measure of temperature, in the energy
units of D.

We envision the PES as a high-dimensional, rough land-
scape with many minima, separated from one another by
saddles, analogous to mountain passes. The saddle structure
of the topography of the PES is central for understanding
cluster dynamics13–15 because it is the saddles that are the
cause of the long residence times near each local minimum
of the PES. Therefore dynamics of cluster evolution that pro-
ceeds through transitions between neighboring local minima
of PES is often called “saddle-crossing dynamics.”16

This concept, dividing cluster motion into configura-
tional and thermal degrees of freedom, is the basis of the
analysis of various cluster properties. We will analyze here
the entropy jump in the solid-liquid phase transition of clus-a�Electronic mail: berry@uchicago.edu.
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ters. In contrast to macroscopic systems, for which the phase
transition occurs at a specific temperature at each pressure, in
the cluster case the two-phase forms may coexist within a
band of temperature and pressure or within ranges of an
analogous pair of cluster parameters. The goal of this paper
is to elucidate the character of and estimate quantitatively the
entropy jump in the cluster phase transition. To illustrate, we
evaluate this quantity specifically for the Lennard-Jones clus-
ter of 13 atoms on the basis of results of computer
simulations.

The term “temperature” is used in the conventional sense
designating the state of a system in thermodynamic equilib-
rium. It is also used on occasion to describe a property of
noncanonical systems, notably systems at constant energy,
for which we use the definition that the effective temperature
of a microcanonical system is the mean kinetic energy per
degree of freedom. Other definitions, not equivalent but
quantitatively connectible to this, are possible. In certain
situations, as in the cases in which vibrational and configu-
rational degrees of freedom are separable, we use the concept
of effective temperature for the locally equilibrated state of
the vibrational degrees of freedom.

II. CONFIGURATIONAL CLUSTER EXCITATION

We now illustrate the above concepts with the example
of a 13-atom cluster for which the interactions between near-
est neighbors determine the cluster PES. A specific configu-
rational excitation as one example of cluster excitation is
shown in Fig. 1 for a 13-atom cluster with a short-range
atom-atom interaction which, in the extreme, is an interac-
tion only with nearest neighbors. The lowest configurational
excitation of this cluster corresponds to transition of one
atom from the icosahedral shell onto the cluster surface and
into a hollow formed by three surface atoms. This is the
lowest configurational excitation of both the 13-atom
Lennard-Jones cluster and a similar system with interactions
only between nearest neighbors. Then the entropy for transi-
tion of this atom in the lowest configuration excitation is

Sconf = ln�15 � 12� = 5.2,

where 15 is the number of surface faces that do not border a
newly formed hole and 12 is the number of final atomic
positions from which an atom can be promoted to create the
hole. This value is independent of the character of interaction

between atoms if the lowest configurational cluster states of
Fig. 1 are considered just one state with degeneracy. Of
course there are really three distinct kinds of surface sites,
and the energies of these configurationally excited states are
split, with energies depending weakly on the position of the
atom raised to the surface. In particular, these excitation en-
ergies are 2.86D, 2.88D, and 2.93D �Ref. 18� for the
Lennard-Jones cluster, where D is the energy of breaking one
bond. We classify these states as a single category and as-
sume them to be mixed as a result of thermal motion of
atoms, particularly of the promoted atom, over the surface.

Treating the cluster within the framework of thermody-
namics, we obtain the total entropy change �S as a result of
configuration excitation:

�S = Sconf + Sterm, �2.1�

where Sterm is the component of the entropy difference of
configurational excitation associated with the thermal vibra-
tional motion of atoms. This quantity is the objective of our
subsequent analysis.

We consider the character of dynamics of cluster atoms
in the course of cluster evolution in the vicinity of the phase
transition when two configurational states, the ground and
the lowest excited one, coexist. Introducing typical times
characterizing the evolution of this cluster, we have the fol-
lowing hierarchy of times:

�D � �th � �obs � �ag, �2.2�

where �ag is a typical time of cluster residence in each local
basin, �obs is a typical observation time, and �th is the time
for thermal equilibration of the vibrations. For this simple
cluster, we distinguish a single solid aggregate state; the liq-
uid form is considered a single aggregate state in which the
cluster visits many local minima. Because �D is a typical
time of atomic collisions inside the cluster and is not very
different from �th, the time for equilibration of the vibrations,
this criterion allows us to introduce the temperature of clus-
ter atoms when this cluster is located in one or the other
specific aggregate state. Note that this description is indepen-
dent of the nature of the excited configurational state and is
valid both for metal clusters and clusters with pairwise inter-
action if criterion �2.2� holds true.

As for external conditions for this cluster, we consider
two types of cluster environments: constant energy and con-
stant temperature, in that order. If this cluster is isolated, it is
considered as a member of a microcanonical ensemble and
its energy is conserved as it evolves among the accessible
configurations. In this case, the cluster with two aggregate
states is characterized by two effective vibrational tempera-
tures of its atoms, Tsol and Tliq, which correspond to the solid
and liquid aggregate states at the two different appropriate
effective potential energies of these states. Indeed, due to
criterion �2.2� thermodynamic equilibrium of the internal vi-
brations is established while the cluster resides in each ag-
gregate state. In particular, if we describe the vibrational mo-
tion of the cluster atoms by a sum of harmonic oscillators
�valid to a level of accuracy sufficient for this part of our
discussion�, these temperatures are related to the atomic ki-
netic energies in the corresponding aggregate states by the

FIG. 1. Configurational excitation of a 13-atom cluster with a pairwise
short-range interaction potential between atoms that supports these atomic
configurations.
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simple relation K= �3n−6�T /2, where, again, n is the number
of cluster atoms and 3n−6 is the number of vibration degrees
of freedom for this cluster. In the case of the 13-atom cluster
we have

Ksol = 33
2 Tsol, Kliq = 33

2 Tliq. �2.3�

We must of course use care in using the concept of tem-
perature for a microcanonical ensemble simply because dif-
ferent definitions of this property, equivalent for a canonical
ensemble, are in general not equivalent for any other
ensemble.19

The other case of external conditions that we consider
here has the cluster located in a thermostat, where the tem-
perature of the atomic clusters T is the same for the aggre-
gate states, but the mean total energy is different for the two
cluster states �or more if more states are present�. Although
for the isothermal situation we suppose equal temperatures
for both phases, we nonetheless continue to allow that �obs

��ag. We next consider these two cases of external condi-
tions because they are both used for computer simulations of
clusters.

Thus, by treating them as members of ensembles, one
can perfectly well use a thermodynamic description for small
clusters. When a cluster is a member of a microcanonical
ensemble, we ascribe different values of thermodynamic pa-
rameters for the two aggregate states �we treat only two ag-
gregate states here�.20,21 In this model, a cluster as a system
of bound atoms may be located near the global minimum of
the PES �the solid aggregate state� in the multidimensional
space of atomic coordinates or in the region of the other local
minima at higher energies of the PES, the group of minima
of which characterizes the liquid aggregate state. Presumably
the barriers separating those higher-energy minima are low
enough to be crossed frequently enough that we would call
the system liquid when it is in that region, moving about.
Certainly this is consistent with the results of many molecu-
lar dynamic simulations of this and similar clusters.

III. THERMODYNAMICS OF THE 13-ATOM
LENNARD-JONES CLUSTER

Our goal is to determine the entropy jump �2.1� from the
information generated by computer simulation of the 13-
atom Lennard-Jones cluster with interaction between atoms
in the traditional form

U�R� = D��Ro

R
�12

− 2�Ro

R
�6� , �3.1�

where R is the distance between atoms, Ro is the equilibrium
distance, and D is the well depth. The advantage of this
interaction potential is that it contains both short-range and
long-range parts, and therefore it is useful as a model inter-
action potential for inert gas atoms. Although a short-range
interaction potential is more suitable in some ways for inert
gas atoms,4,22,23 we will nevertheless use this interaction be-
cause it has been used in most computer simulations. We
make specific use of the computer simulation of this cluster
for canonical conditions: from Ref. 24, and for microcanoni-
cal conditions, we use the results from Ref. 5; both treat the

clusters as systems of classical atoms, an assumption that
was justified, albeit somewhat after those simulations were
done.10 Both of these simulations yielded caloric curves,
mean energy versus temperature for the canonical case, and
effective kinetic temperature for the microcanonical case.
For both situations, the solid and liquid branches of the ca-
loric curves could be distinguished. Also, in both cases, the
slope of the caloric curve for each aggregate state is very
nearly a linear function of the independent variable. Of
course the slopes do change for the equilibrated solid-liquid
mix in the coexistence regions. Figure 2 is a combined graph
showing the caloric curves of the constant-energy and
constant-temperature results.6

We first exhibit the character of our approximations in a
thermodynamic cluster description. Figure 3 shows a typical
time evolution of the total potential energy of atoms of the
13-atom Lennard-Jones cluster. Here, the cluster evolves un-
der isothermal conditions24 in Fig. 3�a�, i.e., the cluster is in
a canonical ensemble at 33 K. Likewise, the cluster evolves
under adiabatic conditions in Fig. 3�b�25 for which the cluster
is in a microcanonical ensemble. In the second case the clus-
ter’s excitation energy �10.8D� is below the energy of the
classical melting point, at which the free energies of solid
and liquid are equal �13.8D�. A thermodynamic description
ignores fluctuations �we do not consider the relation to heat
capacities here� so we can represent the idealized time de-
pendence for the total potential cluster energy schematically
as the random square wave pattern shown in Fig. 3�c�. In this
case, part of the time the cluster is found in the lower, solid
aggregate state and is in the higher-potential liquid state for
essentially the remainder. The time of transition between the
two is so brief compared with the residence time in each
aggregate state that we can neglect that transition time, in
accordance with criterion �2.2�. This comparison shows that
in our thermodynamic description, we use only a small part
of all the information generated in the computer simulation.

So, in the thermodynamic description of clusters we deal
with the average total energy E of cluster atoms that is a sum
of the mean total kinetic energy K of atoms and the mean
potential energy U on the basis of the formula

E = U + K . �3.2�

One such equation describes each aggregate cluster state.
These are defined to account for and describe the character of
cluster evolution as the system moves along the PES. Then,

FIG. 2. Caloric “curves” for the 13-atom Lennard-Jones cluster �Ref. 6�; all
points are from molecular dynamics simulations. Circles are based on
constant-temperature simulations and triangles on constant-energy computa-
tions. Darkened points are from averages over both phases.
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defining a configurationally excited aggregate state as a ki-
netically linked group of states with similar excitation ener-
gies near a local minimum or accessible set of minima on the
PES,4,26 we apply formula �3.2� to the total energies of the
solid Esol and liquid Eliq aggregate states separately, so that
this formula takes the form

Esol = Eo + Ksol + Usol, Eliq = Eo + �E + Kliq + Usol,

�3.3�

where Eo is the total energy of atoms in the solid state at zero
temperature, �E is the energy of configurational excitation
for the liquid state, Ksol and Kliq are the total atomic kinetic
energies for the solid and liquid aggregate states, Usol is the
potential energy of the solid measured from the global mini-
mum atomic configuration and the potential energy of the
liquid, and Uliq=Usol+�E. Based on formula �3.3�, we obtain
three key parameters to describe the cluster if we restrict
ourselves to two aggregate states. These parameters include
�1� the excitation energy of the liquid aggregate state �E, �2�

the degree of thermal �vibrational� excitation corresponding
to the temperature when the cluster is in a canonical en-
semble or the cluster’s excitation energy if it is in a micro-
canonical ensemble, for which we use the appropriate mean
kinetic energy per degree of freedom to define the corre-
sponding effective temperature Tsol or Tliq, and �3� the anhar-
monicity of cluster vibrations, expressed by the anharmonic-
ity parameter � that we define and hence determine as

�sol =
Ksol

Ksol + Usol
, �liq =

Kliq

Kliq + Uliq
�3.4�

for the solid and liquid aggregate states separately; because
the liquid configuration corresponds to a looser atomic struc-
ture, at any given temperature at which both phases coexist
in thermal equilibrium, we expect that �liq��sol. In the case
of harmonic vibrations, we of course obtain �=1 /2, and for-
mula �3.3� takes the following general form for an n-particle
cluster:

Esol = Eo + Usol +
3n − 6

2
Tsol,

�3.5�

Eliq = Eo + Uliq + �E +
3n − 6

2
Tliq,

where n is again the number of cluster atoms. In reality, the
anharmonicity coefficients are close to 1/2, but their differ-
ences are important.

We return now to find the numerical parameters of the
13-atom Lennard-Jones cluster on the basis of results of
computer simulations. For the microcanonical case, we use
results of Ref. 5 and for the canonical case, the results from
Ref. 24; both use ensembles of classical atoms. For the mi-
crocanonical case, we use the values of the total kinetic en-
ergies of atoms for the solid Ksol and liquid Kliq aggregate
states to determine the effective temperatures of the solid Tsol

and liquid Tliq in accordance with formula �2.3�. Because
these values are associated with specific energies of cluster
excitation Eex=E−Eo, one can find from this both the energy
of configurational excitation �E and the anharmonicity clus-
ter parameters �sol and �liq in a range in which both these
aggregate states may be found. On the basis of computer
simulation we have for the excitation energy in the range of
phase coexistence4,27,28

�E = �2.47 � 0.03�D . �3.6�

This value is essentially independent of the cluster tempera-
tures in the range of coexisting phases. We shall assume that
it is constant in the range of concern here.

The anharmonicity parameters can be determined either
from constant-energy or constant-temperature simulations.
The results are significantly different. If the parameters are
evaluated at constant energy, they are essentially the same.
This implies that at a fixed energy at which both solidlike
and liquidlike regions are populated, the deviations from har-
monic character of the two kinds of local minima are similar.
Of course the solidlike wells are deeper than those of the
liquid regions, but this is not inconsistent with the finding
that their extents of anharmonicity are very similar. The an-

FIG. 3. The time variation of the potential energy of cluster atoms in time,
shown as the raw data from simulations. �a� Averaged over short periods of
cluster oscillations the total potential energy of cluster atoms for the isother-
mal 13-atom Lennard-Jones cluster at 33 K �Ref. 24�. �b� The same value
for the isolated 13-atom Lennard-Jones cluster �Ref. 25� at the excitation
energy of 10.8D below the melting energy �13.8D�. �c� Schematic represen-
tation of the ideal dependence at averaging over all the fluctuations in a
range of phase coexistence. The points on the time scale represent 1800
steps of 3 fs, approximately three “breathing” periods per point. Energy is in
units of 10−14 ergs.
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harmonicity parameters of the two forms calculated for con-
stant temperatures are quite different. Figure 4 shows the
parameters based on the constant-energy simulations. We can
see that the liquid regions are significantly more anharmonic
than the solid. The reason is very clear: because the entropy
of the liquid region is significantly higher than that of the
solid and increases faster with the energy as well, the liquid-
region minima populated at a given temperature in the coex-
istence range tend to be at higher energies than those popu-
lated by the solid form. Those higher-energy minima are the
looser, more anharmonic regions that make �liq�T� greater
than �sol�T� for a fixed temperature T. In contrast, the anhar-
monicity parameters from constant-energy simulations are
almost the same for the solid and liquid.

We note that the caloric curves for canonical and micro-
canonical ensembles of atomic clusters are generally differ-
ent at least in part because of the different anharmonicity
parameters for atomic motion in the solid and liquid states.
In that sense, the similarity shown in Fig. 3 may very well
make the 13-particle cluster somewhat exceptional. Indeed,
according to the definition of the anharmonicity parameter,
the energy difference for the solid Esol�T� and liquid Eliq�T�
aggregate states is given by the formula �strictly, with a more
precise expression for the heat capacity, but we do not need
that here�

Eliq − Esol = �E +
33T

2
� 1

�liq�T�
−

1

�sol�T�� . �3.7�

There is of course an open question of whether this result for
a single kind and size of cluster has any generality. Only
further studies will be able to address that issue.

Since the anharmonicity parameters are essentially iden-
tical for the solid and liquid states under constant-energy
conditions, this energy difference is independent of the vi-
brational temperature in accordance with formula �3.7�.
However, under isothermal conditions Tsol=Tliq=T we have
�sol�T���liq�T�, an energy difference that increases as the
atomic temperature rises.

IV. ENTROPY OF THE CLUSTER PHASE TRANSITION

Our goal now is to use computer simulations to deter-
mine the entropy change of the cluster phase transition due
to thermal motion of atoms Sterm that gives the contribution
to the entropy jump in accordance with formula �2.1�. We
extract this value from the equilibrium constant p under
known conditions that we find from results of molecular dy-
namics simulations and is given by

p =
wliq

wsol
, �4.1�

where wsol and wliq are the probabilities that the cluster will
be located in the solid and liquid states, respectively, and
under these conditions wsol+wliq=1 that gives for these prob-
abilities

wsol =
1

1 + p
, wliq =

p

1 + p
. �4.2�

When one studies the clusters in a microcanonical ensemble,
we can introduce the configurational temperature that may
well differ from the temperatures Tsol and Tliq of vibrational
motion. The configurational temperature, determined by the
population ratio for the two forms, is given implicitly by

p = exp�−
Esol − Eliq

Tcon
+ �S� , �4.3�

where �S is the entropy change resulting from the phase
transition. It is clear that if the cluster under consideration is
in a canonical ensemble, the configurational temperature Tcon

at equilibrium coincides with the vibrational temperature of
the atoms T. Then the equilibrium constant based on com-
puter simulation of a cluster in a canonical ensemble allows
us to determine the entropy jump in the range of phase co-
existence. This is made in Fig. 5 on the basis of computer
simulation5,24 for adiabatic and isothermal conditions. In the
latter case, the total energy does not vary during the transi-
tion, and the equilibrium temperature is established after the
transition. Therefore, using formula �4.3� to determine the
transition entropy, we use the energy jump �E according to
formula �3.6� instead of the value Esol−Eliq according to for-
mula �3.7� that is established through a long time interval

FIG. 4. The �dimensionless� anharmonicity parameters for the solid and
liquid aggregate states of the isolated 13-atom Lennard-Jones cluster as
functions of the effective cluster temperature �Ref. 31� which follow from
data of computer simulation �Ref. 5�.

FIG. 5. Reduced to isothermal conditions, the entropy jump at melting of
the 13-atom Lennard-Jones cluster. Closed circles are obtained from the
results of computer simulation of the isolated 13-atom Lennard-Jones cluster
�Ref. 5� and open circles relate to the isothermal 13-atom Lennard-Jones
cluster �Ref. 24�; bars indicate the accuracy of data in transition from dy-
namic to thermodynamic cluster description.
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from a canonical ensemble. The uncertainties for each phase
are based on the range of variation of the potential energies
U�T� and U�E� in the simulations taken from Refs. 5 and 6.

If the cluster is in a microcanonical ensemble, the vibra-
tional temperatures of the solid, Tsol, and liquid, Tliq, are
different, and their difference for a 13-atom cluster is

�T =
�E

C
=

2�E

33
�4.4�

if we assume that all the oscillations for all the vibrational
degrees of freedom for the cluster are classical in both
phases, so that the heat capacity of a 13-atom cluster is sim-
ply C=33 /2. One could, of course, use a more precise ex-
pression for the heat capacity but that is unnecessary for our
purposes here. We express temperatures as well as energies
in energy units of D, the binding energy per bond in formula
�3.2�; in this way, the heat capacity is a dimensionless quan-
tity. In particular, for the Lennard-Jones cluster of 13 atoms
this temperature difference is

�T 	 0.06D .

Evidently, the configurational temperature Tcon lies between
the solid Tsol and liquid Tliq temperatures. Next, we find the
configurational temperature for this case.

We use the balance equation under equilibrium condi-
tions,

wsol	sol�Tsol� = wliq	liq�Tliq� , �4.5�

where 	sol is the rate of solid-to-liquid transition, and 	liq is
the rate of liquid-to-solid transition. These rates are con-
nected by the principle of detailed balance:23,27,29,30

	sol�Tsol�
	liq�Tliq�

= g�Tliq�exp�−
�E

Tcon
� = exp�−

�E

T
+ �S� .

�4.6�

Here g is the ratio of statistical weights for the liquid and
solid aggregate states that is expressed through the transition
entropy �S=ln g; since the statistical weight ratio is deter-
mined primarily by the liquid statistical weight, we reduce it
to the liquid state temperature Tliq. Next, Tcon is the configu-
rations temperature, and �E is the energy of configurational
excitation for this transition.

To determine the configurational temperature, we ac-
count for the basic dependence for the rate of transitions
between aggregate states and then compare their ratio with
the definition of the configurational temperature. We have

	sol�Tsol� 
 exp�−
�E

Tsol
−

Eb

Tsol
� ,

�4.7�

	liq�Tliq� 
 exp�−
Eb

Tliq
� .

Here Tsol and Tliq are the vibrational temperatures for the
corresponding aggregate states, �E is the energy of configu-
rational excitation, and Eb is the energy of the barrier that
separates local minima of the potential energy surface. From
this we have for the equilibrium constant for an isolated
cluster

p =
wliq

wsol
= exp��S −

�E

Tsol
− Eb� 1

Tsol
−

1

Tliq
�� . �4.8�

Comparing this expression with the definition of the configu-
rational temperature �4.3�, we obtain for the latter

Tcon =
Tsol

1 +
Eb

�E

�T

Tliq

, �4.9�

This relation for the isolated 13-atom Lennard-Jones cluster
takes the form �with Eb=0.56D and �E=33�T /2��

Tcon =
Tsol

1 +
0.034D�

Tliq

. �4.10�

From this it follows that the configurational temperature is
closer to the solid temperature than to the liquid one. In
particular, at the melting point of equal free energies where
p=1, we have Tcon=0.95Tsol

m =0.315D, while Tliq
m =0.82Tsol

m

�Tsol
m =0.33D, Tliq

m =0.27D, �sol�Tsol
m �=�liq�Tliq

m �=0.39�. Thus,
on the basis of the values of the equilibrium constant p ob-
tained from computer simulation of this cluster under adia-
batical conditions, one can find the entropy jump for the
phase transition.

The above formulas may be used for determining the
entropy jump �S for the cluster melting transition, assuming
it to proceed at a constant temperature. Because the ratio of
statistical weights in expression �4.6� for the equilibrium
constant is determined mostly by the statistical weight of the
liquid state, we take this ratio at the temperature Tliq, and the
equilibrium constant is given fairly accurately by

p�T� = exp� �E

Tcon
+ �S�Tliq�� . �4.11�

Here, we use the equilibrium constant and temperatures of
aggregate states from the results of computer simulation5 of
the isolated 13-atom Lennard-Jones cluster to determine the
entropy jump as in a classical microcanonical ensemble, and
the energy of configurational excitation is given by formula
�3.6�. The values of the entropy jump obtained this way are
represented in Fig. 5. The error bars in this figure are based
on the mean deviations of the effective temperatures in each
of the phases in the cited simulation study.

In determining the entropy jump on the basis of com-
puter simulation under adiabatic and isothermal conditions
and reducing this value to the isothermal conditions, we use
some assumptions which exhibit the validity of thermody-
namic cluster description. Let us analyze the results given in
Fig. 5 from this standpoint. Each point of this figure corre-
sponds to a certain excitation energy under adiabatic condi-
tions �with the cluster in a microcanonical ensemble� or to a
certain temperature under isothermal conditions �with the
cluster in a canonical ensemble� and bars mark the accuracy
of data due to fluctuations. Next, reducing the case of a mi-
crocanonical ensemble to that of a canonical ensemble, we
ignore the contribution to the entropy jump from the solid
state. The validity of this assumption is justified by the co-
incidence of the entropy jump data for the canonical and
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microcanonical atom ensembles. We see that the thermal part
of the entropy jump increases significantly with a tempera-
ture increase in the range of phase coexistence, while the
configurational part of the entropy jump is independent of
the temperature. The vibrational contribution reveals the ex-
tent of “softening” associated with melting. The temperature
variation of the entropy jump under isothermal conditions
shows that the contribution of changes of the thermal atomic
vibrations to the total entropy change is less than that from
configurational excitation in the coexistence range.

Computer simulation of 13-atom Lennard-Jones clusters
gives us an opportunity to analyze the behavior of clusters in
the range of the phase transition. One can see that cluster
dynamics derived from computer simulation gives a wealth
of information beyond but also contributory to thermody-
namics by allowing us to find thermodynamic parameters of
the aggregate states. This transition from dynamics to ther-
modynamics is of interest itself because gives a deepened
insight into aggregate states, more than what emerges from
classical, macroscopic thermodynamics. Moreover the simu-
lations enable us to recognize the nature of the relationship
between aggregate states of finite and bulk systems. In this
way we see how the thermodynamic description of clusters
reveals the origin of bands of phase coexistence, in contrast
to the sharp phase transitions of bulk atomic materials.

The more detailed dynamic description compared to the
thermodynamic reveals not only the basis of coexistence of
separate phases in the range of the phase transition; it teaches
us how the physics of large systems is specifically the origin
of sharp phase transitions and the Gibbs phase rule. The
dynamics also enables us to work within the framework of
both microcanonical and canonical ensembles, i.e., of clus-
ters under adiabatic or isothermal conditions, to find thermo-
dynamic parameters for the solid and liquid states separately.
From these parameters one can construct thermodynamics of
clusters, taking into account the phase coexistence.

In addition, dynamics from computer simulation allows
us to identify and extract just those parameters that influence
the character of the phase transition. The role of anharmo-
nicity of atomic vibrations is a clear example in the case of
phase transitions. Indeed, the density of states or the entropy
of the liquid state of an atomic ensemble increases more
rapidly with temperature than that of the solid state because
of the sparser atomic density and consequent greater anhar-
monicity in the liquid state. As a result, a temperature in-
crease favors the transition to the liquid.

V. CHARACTER OF PHASE TRANSITIONS
IN CLUSTERS

The phase transition in a cluster of 13 atoms is simpler
than those of larger clusters because the onset of the melting
process in the 13-atom cluster corresponds to one elementary
excitation, the production of a void, that then takes on the
form of a perturbed vacancy.4,26 Therefore in this case the
configurational part of the entropy jump is virtually indepen-
dent of the temperature. �Of course as the temperature in-
creases, additional excitations occur, the atomic mobilities
increase, and the anharmonicities of the vibrations likewise
increase.� Larger clusters do not have this simplicity. In

larger clusters, the contribution of configurational excitation
to the entropy jump decreases remaining near 50%.31,32

However, the configuration entropy change in the transition
may now depend on the temperature because the number of
elementary excitations typically differs from 1. For example,
in the Lennard-Jones cluster consisting of 55 atoms this
number is 5–7.4,26 �The transitions of clusters in this size
range are further complicated by the coexistence of multiple
phases.8,33� Simultaneously, with cluster growth, away from
the point of equal free energies, the fraction of the thermo-
dynamically unfavored phase grows smaller, in fact quite
rapidly, with n. We can see this by examining the way the
equilibrium constant p changes with n when the temperature
is a bit away from the thermodynamic melting point.

That difference between configurational excitation of a
13-atom cluster and of large clusters changes the character of
treatment of computer simulation results in thermodynamic
terms. In particular, Fig. 3 allows one to separate energetic
parameters for two aggregate cluster states of the 13-atom
Lennard-Jones cluster, and fluctuations in these energetic pa-
rameters are relatively small. An increase in the cluster size
leads both to an increase in fluctuation amplitude and to a
decrease in the energetic gap for aggregate states. For ex-
ample, one can single out three aggregate states for the
Lennard-Jones cluster consisting of 55 atoms,8,33 the solid
state, the state with the solid core and liquid shell, and the
liquid state. For each aggregate state the caloric curves are
constructed in a coexistence range. For larger clusters, it be-
comes difficult to identify distinct aggregate states on the
basis of cluster behavior found from computer simulation.
This means that it will be impossible to separate sharply
distinguished aggregate states of large atomic systems in
their ranges of phase coexistence. This will require develop-
ing another method to analyze aggregate states, in particular,
below and above the melting point, as it has been done for
bulk inert gases.4 From this, we recognize the need to work
out new methods for comparing the dynamic and thermody-
namic behaviors of large cluster systems.

Let us conclude by estimating the approximate maxi-
mum size of clusters for which bands of coexistence are
likely to be observable. We can write, in terms of the differ-
ence 
� of chemical potentials of the solid and liquid, with
this difference in units of temperature,

p�T� = exp�n
�

Tcon
� , �5.1�

and reducing this formula to the 13-atom cluster, we have

�	0.7�T−Tm�, where Tm is the melting point. From this it
follows that coexistence of phases near the melting point
may be recognizable for clusters of up to about 100 atoms.

VI. CONCLUSION

Passing from the dynamic description of a cluster to the
thermodynamic one leads to ignoring the fluctuations and
reduces information about cluster evolution. However, the
information in the dynamics makes clear some aspects of the
phase transitions in small systems. In terms of thermody-
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namic cluster description, we are able to gain new insights
into the character of the cluster behavior associated with the
phase change.

For a cluster of 13 atoms, the solid and liquid aggregate
states are separated by an energy gap and dwell for long
enough times in each to establish vibrational temperatures.
Hence we can differentiate these states in the range of coex-
isting phases and find parameters separately for each aggre-
gate state. We fulfill this operation, using it to determine the
entropy of the solid-liquid phase change of the 13-atom
Lennard-Jones cluster in either a canonical or a microcanoni-
cal ensemble. In this case the liquid state includes one el-
ementary configurational excitation that is a perturbed va-
cancy, and the parameters of the solid and liquid states can
be determined separately. For larger clusters, owing to their
increase in both fluctuation amplitudes and the number of
configurationally excited states, separation of the aggregate
states in computer simulation of clusters is difficult. To do
this will require new methods for comparing the dynamic
information from computer simulation with its thermody-
namic description.

Reducing thermodynamic parameters of the 13-atom
Lennard-Jones cluster as a microcanonical ensemble to that
of a canonical ensemble, we demonstrate the validity of a
thermodynamic description for small clusters including the
range of phase coexistence until we ignore fluctuations. This
shows that the entropy jump varies with the temperature in
the range of phase coexistence that testifies about the specif-
ics of the cluster thermodynamics.
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