
Abstract. Clusters and bulk systems of bound atoms with pair-
wise interactions have two types of excitations: configurational,
due to a change in the atomic arrangement in space, and
thermal, associated with atomic vibrations. The configura-
tional excitation is responsible for phase transitions in such
systems and can be considered as a transition from the global
minimum of the atomic potential energy surface in a multidi-
mensional space of atomic coordinates to some other, higher-
energy local minima. From this standpoint, various aspects of
aggregate states of atomic clusters are considered, including
coexistence of the liquid and solid cluster phases, the freezing
point as the temperature of transition from themetastable liquid
state to the unstable state, the glassy states as unstable config-

urationally excited states with long lifetimes, and the phase
transition under high pressures when the crystal lattice for the
distribution of atoms is no longer the most stable form for the
solid state. The concept of voids as elementary internal config-
urational excitations of amacroscopic atomic system, which are
connected with local minima of the potential energy surface,
allows us to consider the glassy ± solid transition and processes
of the growth of nuclei of a new phase as a result of void
transport. The degrees of deviation from traditional macro-
scopic thermodynamics for clusters and bulk systems near a
phase transition is analyzed. It is shown that the thermal mo-
tion of atoms makes a significant contribution to the entropy
jump at the phase transition, which allows us to use the Linde-
mann criterion for the phase transition and other criteria which
use parameters of thermal motion of atoms, even though the
inherent nature of the phase transition is determined by config-
urational excitation.

1. Introduction

The subjects of this discussion are large simple clusters, i.e.,
ensembles of units consisting of a large number of bound
atoms with pairwise interactions between them, and the
related bulk systems of bound atoms that can be considered
as clusters with arbitrarily large numbers of atoms. We will
analyze the aggregate states of such systems of bound atoms
and phase transitions in these clusters. Computer simulation
of clusters has deepened our understanding of the phase
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transitions and allowed us to consider the microscopic nature
of this phenomenon and adjacent phenomena. At first we
note that from the standpoint of classical thermodynamics
[1 ± 6], the solid ± liquid phase transition in a bulk system of
bound atoms proceeds at a characteristic temperature by a
jump and is a first-order phase transition according to the
thermodynamic classification. That is, the transition involves
a nonzero change of energy and entropy as the system goes
fromone phase to the other. Computer simulations of clusters
reveal coexistence of the solid and liquid phases [7 ± 10] over
some temperature range thatmakes thephase transition richer
than that of bulk matter and seems to lie outside the
traditional thermodynamic classification of phase transitions
in order, depending on what thermodynamic quantities
display discontinuities. Classical thermodynamics [1 ± 6]
divides phase transitions into (at least) two fairly well
separated classes, first-order and second-order, according to
the behavior of parameters such as entropy, enthalpy, and
heat capacity at the transition temperature. However, the
distinction between these, and even the nature of the phase
change itself, becomes amuch richer subject for small systems.

In considering large clusters and bulk systems of bound
atoms from a general standpoint, and basing our interpreta-
tions on computer simulations of clusters, we use the same
concepts and description for both these systems. Then we
retain some traditional concepts and parameters for cluster
description such as the entropy, temperature, and thermo-
dynamic potentials, but omit others, such as the surface
tension. As a result, one can understand the character of
transition from finite clusters to infinite (or very large)
systems and understand peculiarities of the microscopic
nature of the phase transition. In particular, although atoms
are complex particles with a shell structure, they cannot
exhibit phase transitions, but phase changes do take place in
many sorts of clusters. The reason for this follows from the
analysis that we will give below.

We concentrate on clusters consisting of classical atoms,
such as clusters of Ne, Ar, Kr, andXe. One can consider these
clusters in terms of atomicmotion in any of the potential wells
that result from atomic interactions. This approach opened
the study of the behavior of such clusters; it was first revealed
in computer calculations of the cluster energy [11, 12]. In
order to find the minimum of a cluster's internal energy and
the optimal configuration of its atoms, one can start from an
arbitrary atomic configuration, calculate the cluster's energy
for this configuration, and then move to a new atomic
configuration with lower energy. In this manner, one can
hope to reach the global minimum of the cluster's effective
potential energy which must relate to the optimal atomic
configuration at zero temperature. But this approach is not
easily realized because a typical cluster potential energy
surface has many local minima. For example, the Lennard-
Jones cluster consisting of 13 atoms (a cluster with the
Lennard-Jones interaction potential between atoms) was
characterized by 988 local minima on its potential energy
surface [11, 12]; a later, more detailed analysis [13] found 1478
local minima and 17357 saddle points of the potential energy
surface for just the same Lennard-Jones cluster of 13 atoms.
The number of geometrically distinct local minima increases
at least exponentially with the number of particles in the
cluster [14, 15]. The number of permutational isomers for
each of these increases approximately as the factorial of the
number of atoms comprising the cluster. Of course, the
neighboring local minima of the multidimensional potential

energy surface are separated by barriers characterized by
saddle points.

Understanding the behavior of such a classical cluster is a
natural subject for simulation by molecular dynamics or
Monte Carlo methods. The evolution of this system consists
of the passage of atoms from the vicinity of certain local
minima of the potential surface to neighboring minima [10,
16 ± 19]. Studying the corresponding saddle-crossing
dynamics [20] is a convenient method for analyzing cluster
evolution. Assuming the dwell time of a system near one
minimum of the potential surface is long compared with the
time required to thermalize atomic vibrations in that local
minimum,we can divide the atomic energy into two parts [21].
The first part is the thermal energy of atomic vibrational (and
rotational) motion, while the second, configurational, part is
that of the local minimum of the potential surface in whose
region the system resides. At zero temperature, the only
energy of the (classical) system is the configurational energy
of the system at its global minimum on the potential surface.
(Here, we do not treat clusters of helium atoms or of very cold
neon atoms, which must be analyzed in quantum-mechanical
terms.)

The possibility of dividing the atomic energy into a
thermal, vibrational energy and configurational excitation
opens a powerful way to approachmany-body dynamics. One
can explain the nature of a phase transition for a system of
bound atoms within the framework of this concept, using a
lattice model [3, 22 ± 24], with the atoms located at the sites of
a lattice. The model becomes particularly straightforward to
use if one assumes that only nearest-neighbor atoms interact.
We demonstrate this fact in Fig. 1 where atoms are located at
sites of the square lattice. This model shows two different
kinds of atomic distributions: the compact ordered state in
which the total binding energy of atoms is maximum, and a
disordered atomic distribution in which atoms may be
anywhere on the lattice. The latter state is characterized by a
lower binding energy than the ordered state, but there are
many ways to achieve such a distribution, so the statistical
weight of the disordered distribution and, hence, its entropy
are large. Therefore, at a certain temperature such a system
can exhibit an order ± disorder phase transition, and for a
system of a large number of atoms this transition appears as a
jump in the internal energy or enthalpy and in the entropy at a
certain temperature at which the free energies of the two
forms are equal. Thus, the lattice model exhibits the nature of
the first-order phase transition in a system of a large number
of bound atoms; this order ± disorder transition models the
solid ± liquid transition in real systems.

a b

Figure 1.Distributions of particles over sites of the square lattice within the

framework of the lattice model [24]. (a) The ordered (compact) distribu-

tion of atoms, and (b) the disordered (random) distribution of atoms.
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As an elementary configurational excitation we examine a
void [25] or empty lattice site; we may think of this as a
perturbed (or relaxed) vacancy, but in contrast to a vacancy in
a solid, a void has an indefinite volume and shape that change
in time. Therefore, from the standpoint of saddle-crossing
dynamics, each configurationally excited state corresponds to
a certain number of voids. The concept of an average void is
useful when configurational excitation of atoms can be
separated from the vibrational excitation associated with an
increase in the kinetic energy of the atoms.We then define the
cluster's aggregate state as a set of its configurations in the
multidimensional space of atomic coordinates near the
relevant local minima of the potential surface, with their
nearby thermal excitation energies. This aggregate state can
be thought of as the collection of all the configurational states
in a chosen energy band, together with the vibrational
excitations of those configurations. This differs from the
concept of `state' in traditional thermodynamics in which
the phase is characterized by a uniform (mean) spatial
distribution of atoms, i.e., an excited aggregate thermody-
namic state includes many elementary configurational excita-
tions. In the cluster case, the liquid aggregate state can
contain even one elementary excitation (which can migrate,
of course), and hence uniformity (in the sense of inclusive-
ness) is not a requirement for the cluster aggregate state.
Within the framework of the void concept, one can describe
coexistence of the solid and liquid phases in a cluster as a
result of the formation and decay of voids. Hence, the
hierarchy of times for the establishment of thermal equili-
brium, the lifetimes of aggregate states, and typical times of
cluster interaction with an environment must be allowed for
in analyzing cluster phase transitions, and we give some
examples of this below.

By separating configurational excitation from thermal,
and introducing an elementary configurational excitation, we
transform basic thermodynamic concepts of the phase or the
aggregate states of clusters to a larger, more flexible mode.
Simply because its behavior is not dominated by very large
numbers of particles, a cluster is more complex than a bulk
system and can exhibit several aggregate states, but in many
cases only two aggregate states may be of importance in a
given temperature range. (Ensembles of homogeneous clus-
ters of a single size may, for example, exhibit more than two
phases in equilibrium [10].) Hence, we will keep the approach
of two aggregate states, and the phase transition can be
described by the same parameters as in classical thermo-
dynamics, i.e., the cluster's melting point Tm, the change of
the cluster energy DE, and the entropy DS characterize the
cluster phase transition. In this work, by Tm we mean the
temperature at which the free energies of the solid and liquid
clusters are equal. These cluster parameters can be deter-
mined on the basis of cluster simulations by methods of
molecular dynamics or can be taken from the experiment.

Of course, a more detailed description of cluster excita-
tions can lead to apparent contradictions with a traditional
thermodynamic description of the phase transitions. As an
illustration we refer to one specific criterion of a phase
transition. According to a widely used Lindemann criterion
[26, 27], bulk melting proceeds at a temperature at which the
ratio of the mean atomic oscillation amplitude to the distance
between nearest neighbors reaches a certain value, typically
10 ± 15%. Development of numerical methods for computer
cluster simulation gave new criteria of cluster melting on the
basis of the Etters ±Kaelberer parameter [28 ± 30] or the

closely related Berry parameter [9, 31] which bases this
fluctuation on pair correlations in the positions of atoms.
These parameters also experience a jump when a system
melts, and, along with the Lindemann criterion, they directly
reflect the change in thermal atomic motion under melting,
while themelting results from configurational excitation of an
ensemble that opens the system to mobility and large-
amplitude motions of the atoms. Hence, there is an apparent
disconnection between the origin of the melting transition in
ensembles of bound atoms due to configurational excitation
and practical criteria that indicate the onset of this transition
based on the thermal motion of atoms. Below, we analyze this
paradox within the framework of the void concept of
configurational excitation of clusters and find that the
entropy jump DS as a result of the phase transition includes,
in addition to its configurational contribution, a thermal part,
because the transition from the compact solid state to the
loose liquid state allows thermal motion of atoms to make a
more significant contribution to the entropy jump DS at the
melting point, and the magnitude of this effect increases with
increasing temperature. This justifies applying the melting
criteria based on the thermal motion of atoms, but we need to
be aware of the connection between the thermal and
configurational degrees of freedom in the melting transition.

The void concept of configurational excitation allows us
to analyze the phase transition in condensed inert gases from
the standpoint of void formation [32 ± 36]. This enables us to
interpret various aspects of a given phase transition. In
particular, the liquid curve of the dependence of the internal
energy on the temperature terminates at the point at which the
liquid state's local minimum in this curve disappears; this is
analogous to the low-temperature spinodal point, well below
the classical point of equilibrium of the two phases [37]. Below
this temperature the metastable liquid aggregate state does
not exist. One can see an analogy of configurationally excited
cluster states at low temperatures with glassy states [38]. This
allows us to analyze glassy states in inert gases at low
temperatures and in clusters [36, 39, 40]. The transport of
voids also determines the character of transport phenomena
in liquid bulk systems of bound atoms; this is especially
conveniently studied using systems with pairwise atomic
interactions. Displacement of an individual atom results
from its transition to a neighboring minimum of the
potential energy surface, and this displacement is on the
order of the interatomic distance. Therefore, any atomic
displacement over large distances has the nature of a
diffusion. This process is closely connected with nucleation
phenomena, because growth of a new phase in the old one
may be considered a result of void transport. Hence,
considering the liquid state as a configurationally excited
state of an ensemble of bound atoms, the state that, in turn,
results from the formation of voids inside the system, we can
analyze from a general standpoint a circle of properties and
processes in a configurationally excited ensemble of bound
atoms. Such an analysis is a goal of this review.

2. Structures of solid clusters

2.1 Configurations of atoms in solid clusters with pairwise
atomic interactions
In considering a cluster as a system of bound atoms, we base
our approach on the concept that two types of cluster
excitations, configurational and vibrational, are separable.
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Indeed, each localminimumon the potential energy surface of
this cluster in a space of atomic coordinates corresponds to a
specific atomic configuration, i.e., to a certain configurational
state of the cluster, with its own excitation energy. Along with
this, atoms execute a vibrational motion near each local
minimum of the potential energy surface, and the amplitudes
of these vibrations characterize the degree of thermal excita-
tion of cluster atoms. We assume an equilibrium for the
thermal motion of atoms and describe a thermal cluster state
by a certain translational (transverse) temperature of cluster
atoms. This means that thermal equilibrium is established
rapidly comparedwith transition to another localminimumof
the cluster's potential energy. Thus, we suppose that we can
separate the configurational and vibrational excitations and
characterize the latter by a definite temperature.

We focus below on a pairwise interaction between atoms
as the simplest case of interactions in a system of bound
atoms. In this case one can express the cluster's energy
parameters in terms of parameters of the interaction
potential of two isolated atoms. If we proceed to the limit of
zero temperature in the sense of zero energy of thermal
excitation, only configurational excitation of the cluster
takes place; we will analyze the configurational excitation of
the cluster in this manner. In considering clusters with pair
interactions between atoms, we will be guided by clusters of
inert gases for which the interaction potential between
neighboring atoms is small compared to the typical energy
of the electronic excitation in the atom. Because of the
weakness of interaction between these atoms, we ignore
three-body and many-body interactions. This simplifies the
problem and allows one to ascertain the influence of short-
range and long-range interactions on the properties of a
system of many bound atoms.

At zero and low temperatures, clusters form regular
structures, some of which can be found in bulk crystalline
solids. One can construct such clusters by cutting them out of
a bulk crystal. Altogether there are 230 space groups of
symmetry for crystalline lattices [41], and hence clusters can
have any one of these depending on the character of
interaction inside the system. Clusters have their greatest
stability at sizes corresponding to completed structures
composed of `magic numbers' of atoms. Magic numbers of
solid clusters may be recognized from local maxima in the
mass spectra of clusters [42 ± 48]. The optimal cluster
structures themselves for these magic numbers have been
determined from electron diffraction experiments [49 ± 54],
although the interpretation of electron diffraction spectra of
clusters is associated with some challenges [55, 56]. Magic
numbers are reflected in other cluster properties, in particu-
lar, in ionization spectra [57 ± 59]. Magic numbers are
important in the way they influence various cluster proper-
ties: the binding energy of a surface atom, the ionization
potential, the electron affinity, and other cluster parameters
have local maxima at magic numbers of atoms, at which a
cluster has the greatest stability. Magic numbers disappear in
the liquid aggregate states because these exhibit monotonic
dependence of their parameters on their size. This effect is
used for determining the cluster melting point [60, 61].

Below, we restrict our discussion to two close-packed
crystal structures that result from a pair interaction potential,
when the short-range interaction dominates a system ofmany
bound atoms. These are of course the face-centered cubic and
hexagonal crystal lattices. In these, each internal atom of the
lattice has 12 nearest neighbors, i.e., the maximal possible

number of nearest neighbors. We now examine these
structures and analyze their energy parameters.

Guided by this pairwise interaction model, we also
consider the limiting case in which there is no long-range
interaction between atoms. Since only nearest neighbors
interact in this case and all the distances between nearest
neighbors are identical in ensembles with close-packed
structures, the total binding energy of atoms Eb in such
clusters at zero temperature is proportional to the total
number k of bonds between nearest neighbors [62, 33] :

Eb � kD ; �2:1�

where D is the bond dissociation energy. Since the total
energy of such a cluster is E � ÿEb, one can introduce the
surface energy of such a cluster consisting of n atoms in the
following way:

Esur � E� 6nD : �2:2�

When a long-range interaction is present, the binding energy
per atom e0 exceeds that (6D) in the case of a short-range
interaction of atoms, and formula (2.2) takes the form

E � ÿe0n� Esur : �2:3�

In the limit of large clusters (with n!1), for which the
cluster surface energy is proportional to the cluster surface
which, in turn, is proportional to n2=3, formula (2.3) becomes
the asymptotic form

E � ÿe0n� An2=3 ; �2:4�

where A is the specific surface energy. This formula is an
expansion of the cluster energy in terms of a small parameter
nÿ1=3 [63] for a large cluster �n4 1), when the number of
surface atoms is small compared to the total number of
atoms. Their ratio appears as a small parameter of the theory.

In reality, E�n� has a nonmonotonic dependence on n due
to the varying structures of incomplete cluster shells. One can
ascribe this to the surface energy and define in this manner the
function A�n� as a nonregular function in accordance with
formula (2.4). With such a definition, we have

A�n� � e0n� E

n2=3
: �2:5�

Like crystalline particles whose optimal shape is deter-
mined by the character of atomic interactions, the configura-
tion of cluster atoms is determined by parameters of the pair
interaction potential in the case under consideration. Atoms
of a solid cluster are distributed over cluster shells or layers,
and joining new atoms to a cluster proceeds through filling
such shells or layers. In contrast to bulk particles, edge and
vertex atoms make a nonnegligible contribution to the cluster
energy. Optimal atomic configurations correspond to closed
cluster shells, layers, or facets; these are the configurations
that correspond to magic numbers of atoms.

Bulk particles and clusters of a given crystalline structure
can form different geometric figures. Which one is optimal
depends on the parameters of the pair interaction. The energy
parameters of a cluster with open shells are sensitive to the
filling of certain shells or layers. The optimal cluster structure
results from competition among several cluster shapes even
when only one crystalline structure is realized. The competi-
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tion among cluster shapes for close-packed structures is the
focus of the analysis we make next.

2.2 Clusters of the face-centered cubic structure
Clusters of a given structure can be cut off from a crystal
lattice of this structure. Considering a cluster with the face-
centered cubic (fcc) structure, we use as a basis the fcc crystal
lattice. If we take an atom of the fcc lattice or the middle of an
elementary cell as an origin of the reference frame and place
some atoms on the axes of this reference frame, the fcc crystal
will possess the corresponding symmetry, so that this crystal
lattice is conserved as a result of the following transforma-
tions

x ! y ! z ; x !ÿ x ; y !ÿ y ; z !ÿ z ;

�2:6�

where x, y, z are the coordinates of atoms. Note that we have
two types of fcc crystal lattices, depending on the position of
the origin of a reference frame. The origin can be placed either
in the center of an elementary cell or at an atom of the lattice.
Thus, there are two types of fcc clusters, with and without a
central atom.

Taking planes f100g (in accordance with a general
notation [41]) as the planes of the reference frame, we obtain
the 12 nearest neighbors of a test atom with coordinates x, y,
z, whose coordinates are

x; y� a���
2
p ; z� a���

2
p ; or x� a���

2
p ; y; z� a���

2
p ;

or x� a���
2
p ; y� a���

2
p ; z ; �2:7�

where a is the distance between nearest neighbors. It is
convenient to introduce reduced values for atomic coordi-
nates, expressing them in units of a=

���
2
p

. Then the coordinates
z, x, y of each an atom are integers, and the 12 nearest
neighbors of an atom with coordinates x, y, z have the
following reduced coordinates:

x� 1; y� 1; z; x� 1; y; z� 1; x; y� 1; z� 1 : �2:8�

If we choose an atom to be at the origin, then the 12 neighbors
combine into the three sets of four atoms lying at the centers
of the four square faces surrounding the central atom, in each
of the three mutually perpendicular 100 planes.

We define a cluster shell of a system of atoms whose
positions go over into one another as a result of transforma-
tions (2.6). Thus, the coordinates of atoms of one shell differ
by the sign of one or more coordinates and by the
transposition of coordinates z, x, y: We see that the
maximum number of atoms in one shell is equal to
6� 2� 2� 2 � 48. Next, a shell is closed if any transforma-
tion (2.6) transfers a test atom into an initially occupied
position. The number of atoms that gives a cluster a closed
outer atomic shell is a magic number.

Let us formulate amethod for constructing a cluster of the
fcc structure with the maximum binding energy for a given
number of cluster atoms with a short-range interaction
potential [33, 62, 64, 65]. The optimal configuration of
atoms at zero temperature corresponds to a maximum
number of bonds according to formula (2.1). There are
problems in determining the optimal configuration of cluster
atoms by computer simulation because of the large number of
local minima on the potential surface, but for clusters with

short-range interaction, a simple algorithm allows one to find
the optimal atomic configuration by comparing the cluster
energies for a restricted number of favorable configurations.
It is clear that the maximum number of bonds corresponds to
compact atomic configurations and filled atomic shells.
Therefore, the most favorable atomic configurations are
based on a spherical core with closed shells and appended
atoms outside these shells, so that the optimal atomic
configuration follows from comparison of the cluster ener-
gies at different positions of a supplementary atom. This
method gives both the most favorable configuration of atoms
for a given number of atoms and the sequence of filling the
atomic shells.

One can illustrate this method with an example [33] where
a cluster has a symmetrical core consisting of 79 atoms that
contains the atomic shells 000�1�, 011�12�, 002�6�, 112�24�,
022�12�, and 013�24�. The total number of atoms in each shell
is given in parentheses. We here define a shell by atomic
coordinates z, x, y of one representative atom from that shell,
whose coordinate set is given by positive numbers satisfying
the inequality z4 x4 y. Thus, such an atom characterizes its
shell, and other atoms of this shell can be obtained with
transformations (2.6). Nearest neighbors of a test atom in the
course of filling next shells are determined by formula (2.8)
and are given in Table 1. One can see that the optimal
character of cluster growth at this stage consists of filling
individual blocks, so that each block contains 1 atom of the
shell 222, and 6 atoms of the shell 123. In this manner, the
filling of separate facets of the cluster in the direction f111g
proceeds one after the other.

Themanner of growth of an fcc cluster with a central atom
is evident from Table 2, if only nearest neighbors interact in
this cluster. The same information for fcc clusters without a
central atom is contained in Table 3. Note that the sum of
reduced coordinates z� x� y for clusters with a central atom
is even, and for clusters without a central atom is odd. These
two types of clusters are different, and it is necessary to
consider them separately. We focus on an example [33] in
which a noncentered fcc cluster with closed outermost shells
122, 113, and 023 consists of 116 atoms (see Table 3). The
surface energy of this cluster is 180 (we reduce it to the units of
the energy spent on breaking one bond).We now construct an
fcc cluster with a central atom of a given size; the spherical
core of such a cluster contains 79 atoms (see Table 2). Adding
to this core five blocks of 7 atoms from the 222 and 123 shells
and two atoms from the shell 114 in such a manner that these
atoms join filled blocks, we obtain the surface energy of an

Table 1. Nearest neighbors of newly joined atoms in the course of cluster
growth.

Shell Nearest neighbors Binding energy

222

211 121 112
213 123 132
231 321 312
233 323 332

3

123

112 022 013
114 024 033
132 222 213
134 224 233

4ÿ6

Note. Nearest neighbors from previous shells are indicated in bold text,

and nearest neighbors from the shell being filled are indicated in italics.
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fcc atom-centered cluster 138� 5� 9� 2� 2 � 187 (see
Table 2). Another structure of an fcc atom-centered cluster
consists of a core of 79 atoms, four added blocks of 7 atoms,
six atoms of the 033 shell, two atoms from the 123 shell, and
one additional atom from the 222 shell. These atoms add
themselves to the above blocks. In this case, the cluster's
surface energy reaches 186, i.e., this structure of the atom-
centered cluster is more stable than the previous one, but an
atom-noncentered cluster with a given number of atoms is
preferable to an atom-centered one. Note that an atom-
centered cluster identical to the above atom-noncentered
cluster of 116 atoms with closed shells includes a core of
55 atoms, and outside this, 20 atoms from the 013 shell,
24 atoms from the 113 shell, 4 atoms from the 222 shell,
4 atoms from the 033 shell, 1 atom from the 004 shell, 4 atoms
from the 114 shell, and 4 atoms from the 024 shell. As follows
from Table 2, obtaining such an atomic configuration
requires the displacement of many internal atoms, and,
hence, such a configuration of atoms does not include atom-
centered clusters in our scheme of construction. This means
that the schemes for assembling atom-centered and atom-
noncentered clusters are different. Thus, assuming the
optimal cluster configuration be close to the spherical one
and constructing the cluster around a given center, we obtain

two schemes of construction of fcc clusters, depending on the
position of the central atom around which the cluster is
assembled.

Analyzing the data in Tables 2 and 3, we conclude that the
optimal cluster configurations in the course of cluster growth
proceed through an addition to the blocks consisting of atoms
of different shells. Comparing the energies of cluster
structures with a central atom and without it allows us to
choose the energetically optimal structure for a given size of
fcc cluster. It follows from the data of Tables 2 and 3 that the
cluster blocks added in the course of cluster growth are
elements of plane facets. Magic numbers of clusters corre-
spond to the addition of individual blocks to a spherical core.

Thus, one can formulate the method of assembling an fcc
cluster with short-range atomic interaction. The main goal of
this cluster construction is to analyze compact atom config-
urations and to choose, for a given number of atoms, the
configuration that corresponds to the maximum number of
bonds between nearest neighbors. Because such an idealized
growing cluster has almost spherical form, the number of
shells being filled is restricted for moderately large clusters. In
reality, growth of an fcc cluster with a short-range atomic
interaction proceeds through growth of individual facets, and
magic numbers correspond to the filling of each cluster facet.

Table 2. The sequence of growth of fcc clusters with a central atom for a short-range interaction of atoms [33, 62, 64, 65].

Shells being élled n Esur Block being élled

011
002(4)
112(3 ë 5)+022(5)
013(4)
222(3)+123(4 ë 6)
035(5)+004(4)+114(5)+024(6)
233(3 ë 5)+224(5)+134(5 ë 6)
015(4 ë 6)+125(5 ë 6)
044(5)+035(6)
006(4)+116(5)+026(6)
334(3 ë 5)+244(5)+235(5 ë 6)+145(5 ë 6)+226(5)+136(6)
055(5)+046(6)
017(4 ë 6)+127(5 ë 6)+037(6)
008(4)+118(5)+028(6)
444(3)+345(4 ë 6)+255(5)+336(5)+246(6)+156(5 ë 6)+237(5 ë 6)+147(6)

2 ë 13
13 ë 19
19 ë 55
55 ë 79
79 ë 135
135 ë 201
201 ë 297
297 ë 369
369 ë 405
405 ë 459
459 ë 675
675 ë 711
711 ë 807
807 ë 861
861 ë 1157

ì
42 ë 54
54 ë 114
114 ë 138
138 ë 210
210 ë 258
258 ë 354
354 ë 402
402 ë 414
414 ë 450
450 ë 594
594 ë 606
606 ë 654
654 ë 690
690 ë 858

ì
ì
110
100
111
100
111
100
110
100
111
110
100
100
111

Note. The égures in parentheses mean the number of nearest neighbors for the shell élled.

Table 3. The sequence of growth of fcc clusters without a central atom for a short-range interaction of atoms [33, 62, 64, 65].

Shells being élled n Esur Block being élled

001
111(3)
012(3 ë 6)
003(4)
122(3 ë 5)+113(5)+023(5 ë 6)
014(4 ë 6)
223(3 ë 5)+133(5)+124(5 ë 6)+034(5 ë 6)
005(4)+115(5)+025(6)
016(4 ë 6)
333(3)+234(4 ë 6)+225(5)+144(5)+135(6)+126(5 ë 6)
045(5 ë 6)+036(6)
007(4)+117(5)+027(6)
018(4 ë 6)
344(3 ë 5)+335(5)+245(5 ë 6)+236(5 ë 6)+155(5)+146(6)+227(5)+137(6)
056(5 ë 6)+047(6)
128(5 ë 6)+038(6)

1 ë 6
6 ë 14
14 ë 38
38 ë 44
44 ë 116
116 ë 140
140 ë 260
260 ë 314
314 ë 338
338 ë 538
538 ë 586
586 ë 640
640 ë 664
664 ë 952
952 ë 1000
1000 ë 1072

ì
24 ë 48
48 ë 84
84 ë 96
96 ë 180
180 ë 204
204 ë 312
312 ë 348
348 ë 372
372 ë 516
516 ë 528
528 ë 564
564 ë 588
588 ë 756
756 ë 768
768 ë 792

ì
111
110
100
110
100
111
100
100
111
110
100
100
111
110
100

Note. The figures in parentheses indicate the number of nearest neighbors in the shell filled.
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The same method of cluster construction may be used if a
long-range atomic interaction is present. However, this
additional interaction can change intermediate magic cluster
numbers.

In considering clusters with pairwise atomic interaction,
we take as a basis a short-range interaction of atoms that
corresponds to interaction between nearest neighbors. When
a long-range interaction is included, the short-range atomic
interaction still makes the dominant contribution to the total
binding energy, so that it is convenient to represent the total
binding energy Eb in the form [66]

Eb � Enn � Ennn � Estr : �2:9�
Here, Enn refers to the interaction between nearest neighbors
and is given by formula (2.1), Ennn represents the interaction
between nonnearest neighbors, and Estr is the strain energy
due to tensions inside the cluster which is equal to

Estr � Eb�a� ÿ Eb�Re� ;

where Re is the equilibrium distance for the pair interaction
potential, and a is the distance between nearest neighbors.
In particular, in the case of the Lennard-Jones interaction
between atoms, we have for a crystal of the fcc structure
[33, 67]:

Eb

n
� 8:61D;

Enn

n
� 6D;

Ennn

n
� 2:39D;

Estr

n
� 0:22D ;

�2:10�

where n is again the number of cluster atoms; interaction
between nearest neighbors dominates in this case.

2.3 Regular clusters with close-packed structures
In the course of growth, a cluster passes through closed-shell
structures; now we consider the geometric figures that can be
realized for clusters with pairwise interactions. Regular
figures of close-packed structures can have either fcc or
hexagonal (hcp) structures. In the case of the fcc structure,
the corresponding geometric figure possesses cubic symmetry
Oh [68]. This means that any one of transformations (2.6)
transfers a test atom of the cluster to a position that is
occupied by another atom (or by this one). In the case of the
hexagonal structure, the geometric figure possesses a lower
symmetry, whose atomic configuration is conserved as a
result of transformations

z$ ÿz ; F! F� p
3
: �2:11�

Here, we take a plane f111g in which each atom has 6 nearest
neighbors as a basis of the hexagonal lattice. The z-axis is
directed perpendicular to this plane, and F is the polar angle
with respect to that z-axis. According to this symmetry, the
maximum number of atoms in one shell is equal to 2� 6 � 12
for a cluster with the hexagonal structure, as with the fcc
structure. Optimal configurations of atoms in solid hexagonal
clusters may be found by the same method [64, 71], as we
described above for the fcc solid clusters.

In order to construct geometric figures of solid clusters
that are restricted by plane facets, we first consider planes
which can be formed for a close-packed structure. In the case
of the fcc structure, there are three types of planes, namely,
f100g, f110g, and f111g. We use standard notation for these
planes [41] expressed as the coordinates of a line passing

through the origin that is perpendicular to this plane. There
are 6 different planes of the f100g type, 12 planes of the f110g
type, and 8 planes of the f111g type. Thus, the maximum
number of simple, low-order plane facets of an fcc crystalline
particle equals 26. This determines the variety of geometric
figures for clusters of the fcc symmetry. The planes of the fcc
crystal lattice are displayed in Fig. 2 [33]. Note that according

a

b

c

Figure 2. The structures of fcc-planes. Positions of atomic centers of the

surface layer are indicated by black circles, centers of atoms of the

preceding layer are marked by crosses, and centers of atoms of the next

layer are shown by white circles. (a) A f100g-plane; the distance between
neighboring lines of atoms in the plane is a, and the distance between

neighboring planes is a
���
2
p

; (b) a f110g-plane; the distance between

neighboring lines of atoms in the plane is a
���
2
p

, and the distance between

neighboring planes is a=
���
2
p

; (c) a f111g-plane; the distance between

neighboring lines of atoms in the plane is a
���
3
p

=2, and the distance

between neighboring planes is a
��������
2=3

p
.
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to Tables 2 and 3, growth of clusters with fcc structures results
from the filling of facets of the three orientations
f100g; f110g, and f111g.

Let us evaluate the number of nearest neighbors for a
surface atom of each plane of the fcc structure. Each surface
atom of a f100g-plane has 4 nearest neighbors from the
surface layer and 4 nearest neighbors from the preceding,
more interior one, i.e., a surface atom of a f100g-plane has
4 nearest neighbors. In the same manner we find that each
surface atom of a f110g-plane has 4 nearest neighbors, and
each surface atom of a f111g-plane has 9 nearest neighbors.
From this it follows that geometric figures with surface facets
of directions f111g and f100g are energetically more stable
for bulk fcc crystalline particles with pair interactions. Hence,
below we restrict ourselves to geometric figures whose facets
are directed along these planes (see Fig. 3).

One can construct families of identical figures,which differ
by size. Taking the edge length of this figure to bema, where a
is the distance between nearest neighbors, we callm the figure
number in the series. We start from the octahedral cluster
(Fig. 3a) whose surface consists of 8 regular triangles; an
octahedral cluster can be either atom-centered or atom-
noncentered. The 6 vertex atoms of such a cluster have the
coordinates 0; 0;m or can be obtained from these as a result of
transformations (2.6). Table 4 contains formulas for a number
of atoms in this cluster, depending on the number m of the
series and the surface energy Esur of this cluster and the total
binding energy Eb of cluster atoms [33, 65, 69] in the case of a
short-range interatomic interaction. The total cluster energy is
connectedwith its surface energyby formula (2.2).The surface
of the cuboctahedral figure (Fig. 3b) consists of 6 squares and
8 equilateral triangles, and Table 4 lists its parameters for a
short-range interaction [33, 65, 69]. In contrast to octahedral
clusters, all the cuboctahedral clusters have a central atom.

The truncated octahedral structure (Fig. 3c) is formed
from the octahedron by cutting off 6 regular pyramids from

its vertices. A so-formed cluster is characterized by the index
m, the number of the octahedron in its family, and by the index
k, the number of atoms on the pyramid's edge. Parameters of
this figure for a short-range interatomic interaction are given
in Table 5 [33, 65, 69], and the parameters noct,Eoct

sur,E
oct
b relate

to the octahedral cluster of the m-th series. The regular
truncated octahedron is the optimal structure for a short-
range interaction. Its surface consists of 8 regular hexagons
and 6 squares and contains 36 edges of the identical size. For
the family of regular truncated octahedrons we have m � 3k,
and the parameters of this figure are presented in Table 4 [33,
65, 70, 71]. Furthermore, Fig. 4a displays the dependence of
the specific surface energy for fcc clusters on the cluster size in
the conditions of interatomic interactions involving nearest
neighbors, while maximum values of the specific surface
energy relate to the structure of a regular truncated octahe-
dron.

Favorable structures of fcc clusters with a short-range
interaction possess the structure of a truncated octahedron,
and Table 5 gives closed structures of such fcc clusters in the
course of their growth. Almost all these structures consisting
of hundreds of atoms constitute truncated octahedrons. The
regular truncated octahedron is also an optimal cluster
structure if long-range interaction is important [70]. Note
that the specific surface energy A given by formulas (2.4) and
(2.5) is characteristic of the energetics of a solid cluster. For
optimal structures, this quantity has minimal values. This
parameter is listed in Table 4 for infinite clusters with the
structures under consideration. For the truncated octahe-

c

d

a

b

Figure 3. Regular structures of atomic clusters: (a) octahedron,

(b) cuboctahedron, (c) truncated octahedron, and (d) icosahedron.

Table 4. Parameters of the families for geometric figures of clusters with close-packed structures and a short-range interaction between atoms. In the case
of an icosahedral cluster, the truncated Lennard-Jones potential is used, i.e., the Lennard-Jones interaction potential specifies the interaction between
nearest neighbors, and is zero for all other interatomic distances.

Figure n Esur=D Eb=D A1=D

Octahedron
Cuboctahedron
Trunc. octahedron
Reg. trunc. octahedron
Hexahedron
Trunc. hexahedron

�2=3�m3 � 2m2 � �7=3�m� 1

�10=3�m3 � 5m2 � �11=3�m� 1

noct ÿ k�k� 1��2k� 1�
16m3 � 15m2 � 6m� 1

4m3 � 6m2 � 4mÿ 7

28m3 � 21m2 � 6m� 1

6m2 � 12m� 6

18m2 � 18m� 6

E oct
sur ÿ 6k�k� 1�

48m2 � 30m� 6

21m2 � 21mÿ 12

72m2 � 36m� 6

4m3 � 6m2 � 2m

20m3 � 12m2 � 4m

E oct
b ÿ 12k2�k� 1�

6m�16m2 � 7m� 1�
24m3 � 15m2 � 3m� 5

168m3 � 90m2

7.86
8.07
ì
7.56
8.33
7.81

Table 5. Parameters of filled structures of fcc clusters with short-range
interatomic interaction within the framework of the structure of a
truncated octahedron. The asterisk marks the minimum of A�n� as a
function of magic numbers.

n A m; k n A m; k

201*
260
314*
338
369
405
459*
538
586*
640
664
675
711
807*
861
885
952
976

7.519
7.659
7.533
7.666
7.814
7.563
7.562
7.801
7.540
7.594
7.699
7.719
7.607
7.545
7.624
7.746
7.812
7.561

6.2
7.3
7.2
7.1
ì
8.3
8.2
ì
9.3
9.2
9.1
ì
10.4
10.3
10.2
10.1
ì
11.4

1000
1072*
1126
1139
1157
1289*
1385
1504
1654*
1750
1804
1865
1925
2075*
2171
2190
2225
2406*

7.680
7.561
7.650
7.647
7.785
7.548
7.581
7.587
7.550
7.602
7.693
7.643
7.561
7.561
7.622
7.614
7.710
7.552

ì
11.3
11.2
12.5
ì
12.4
12.3
13.5
13.4
13.3
13.2
ì
14.5
14.4
14.3
15.6
14.2
15.5
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dron, this quantity is equal to [33]

A1 � 3� �18�1=3 �1ÿ k2=m2�
�1ÿ 3k3=m3�2=3

: �2:12�

As follows from Table 4, the regular truncated octahedron
is the optimal figure for large clusters with the fcc
structure.

The hexagonal structure is the other close-packed struc-
ture in which each internal atom of the lattice has 12 nearest
neighbors. This structure may be analyzed for clusters in the
same manner [33, 62, 71] as was done for clusters of the fcc
structure. We illustrate this structure by constructing the
cuboctahedral cluster involving 13 atoms. Indeed, taking a
plane in the direction f111g as a base for this cluster, we place
a regular hexagon of atoms with a central atom on this plane.
The edge of this pentagon measures a, the equilibrium
distance for a pair atomic interaction. Next, three atoms are
located in a layer parallel to and at a distance a

��������
2=3

p
from the

basic one, and the same kind of layer is constructed below the
basic layer. Atoms are placed in these layers in hollows of
triangles and form regular triangles such that atoms of new
layers form a regular triangle whose edge length equals a.
There are two possibilities for the relative location of atoms in
the upper and lower layers. If the projections of atoms from
the upper and lower layers onto the central layer plane do not
coincide, these atoms form a cuboctahedron. Such a cluster
has the fcc structure and it is conserved as a result of
transformations (2.6). If the atomic projections of the first
and third layer coincide, the figure formed is a hexahedron.

This cluster possesses hexagonal symmetry and is conserved
under transformations (2.11).

Clusters of the hexagonal structure contain a central atom
in a basic layer and a system of regular hexagons is formed
around a common center located at the central atom. Atoms
of next layers are located in the hollows of triangles formed by
atoms of preceding layers, and the distance between nearest
layers measures a

��������
2=3

p
, as in the above case of the simplest

hexagonal cluster involving 13 atoms. Taking a system of
regular hexagons in the basic layer and placing atoms of a new
layer in hollows between three atoms of the preceding layer,
we obtain a hexahedron that is conserved under transforma-
tions (2.11). Parameters of the family of hexahedrons [33, 71]
are presented in Table 4. We also construct a truncated
hexahedron by removing some layers from the hexahedron.
For the parameters of Table 4, we take a 2m-th hexahedron
and remove m upper and lower layers. From this it follows
that a large truncated hexahedron is a more favorable figure,
but the energetics of large hexagonal clusters is worse than
that for fcc clusters because of the former's lower symmetry.
Next, in contrast to fcc clusters in which all the surface atoms
are located on the plane facets, atoms of lateral sides of
hexagonal clusters do not form planes.

Thus, the hexagonal cluster structure competes with the
fcc structure in the case of small clusters for which the
icosahedral structure is more favorable, and therefore this
competition is not significant for small clusters [33, 71].
Because of their higher symmetry, the fcc cluster surfaces
are more favorable for large cluster sizes than the hexagonal
ones, and therefore large clusters of the fcc structure are
characterized by a higher binding energy of atoms than
hexagonal clusters. The competition of the hexagonal and
fcc structures becomes stronger for bulk clusters or crystals
when the surface effects are not dominant and the competi-
tion depends on the character of interatomic interactions. In
particular, in the case of the Lennard-Jones crystal, the
hexagonal structure is favorable [72], although the difference
in the sublimation energies per atom is small (� 0:2%). In
reality, inert gas crystals have the fcc structure [41, 67, 73, 74].

2.4 Competition among icosahedral
and close-packed structures
The number of ordered cluster structures is greater than the
number of types of crystal lattices. Clusters with a pair
interaction of atoms, including clusters of inert gas atoms,
demonstrate this fact vividly. Indeed, clusters with short-
range interaction, like bulk systems of bound atoms, can have
a close-packed structure that corresponds to the fcc or
hexagonal crystal lattices, but such clusters also permit the
icosahedral structure that is not realized for bulk crystals.
Thus, clusters with pair interatomic interactions give a
convenient example for understanding the structural and
energetic parameters of clusters.

The icosahedral cluster structure (see Fig. 3d) can be
related to close-packed structures because, like fcc and hcp
crystals, each internal atom has 12 nearest neighbors. But in
the close-packed lattice structures, all the distances between
nearest neighbors in a bulk systemare identical, whereas in the
case of the icosahedral structure there may be two different
distances between nearest neighbors. This is one reason why
the icosahedral structure cannot compete with the close-
packed structures at the limit of a bulk atomic system, and
this structure cannot be realized in a bulk crystal lattice. The
other reason is that it does not correspond to a translationally
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Figure 4. The specific surface energy for optimal atomic configurations of

fcc clusters (a) and icosahedral clusters (b) [33]. In the case of fcc clusters,

black circles correspond to clusters with a central atom, and white circles

to atom-noncentered clusters.
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invariant lattice, but rather to a structure with a specific
center. But the icosahedral structure is nonetheless compact
enough to yield stable clusters, because all 20 surface triangles
of the icosahedral cluster with closed shells are f111g-planes
with the maximum number of nearest neighbors for surface
atoms. Hence, the icosahedral structure is energetically
favorable for small and moderate sizes of clusters.

An icosahedral cluster as a geometric figure has 12 vertices
located at identical distances from the center [75]. The
icosahedron possesses a high symmetry Yh [68] characterized
by 6 five-fold axes passing through the icosahedron's center
and twoopposite vertices located at opposite poles of a sphere,
and rotation of the icosahedron by the angle 2p=5 around any
symmetry axis conserves its figure. Along with this, the
icosahedron is conserved as a result of turning by an angle
p=5 around one of these axes and reflection with respect to the
plane perpendicular to the axis and passing through the
icosahedron center. Another symmetry of the icosahedron
corresponds to the inversion operations x$ ÿx, y$ ÿy,
and z$ ÿz. Next, the icosahedron possesses a symmetry of
reflectionwith respect to anyplane that passes through a given
symmetry axis and two vertices of pentagons. This is also valid
for any axis of the icosahedron. Thus, the icosahedron
constitutes a geometric figure of very high symmetry.

In order to construct the simplest icosahedral cluster
consisting of 13 atoms, we place one atom in the center and
construct around this atom a sphere of a radius R, where the
other 12 atoms are located in the following way. Two atoms
are placed at the sphere's poles, so that they are connected by
a line that passes through the center. The other 10 atoms form
two pentagons whose planes are perpendicular to this line.
The pentagons are inscribed in circles that are sections of
planes and the sphere, and the pentagon's vertices are rotated
by an angle of p=5 with respect to each other. These circles
form a cylinder whose axis is the icosahedral axis. Joining the
nearest vertices of the icosahedron, we obtain 20 equilateral
surface triangles. This means that the distances between
nearest neighbors on the sphere are identical, and each
surface atom has 5 nearest neighbors on the sphere. Nearest
neighbors of polar atoms on the sphere are the atoms of the
nearest pentagon, and each atom of a pentagon has as nearest
neighbors on the sphere one atom of the nearest pole, two
nearest atoms of its own pentagon, and two atoms of the
neighboring pentagon. The distance R0 between nearest
neighbors on the sphere and the distance R from the center
to surface atoms are connected through the relation

R �
������������������������������
5
p

8
�1�

���
5
p
�

s
R0 � 0:951R0 : �2:13�

All the atoms in this cluster are equivalent, apart from the
central atom. Let us find the specific binding energy of atoms
for a bulk icosahedral cluster in the case of atomic interac-
tions between nearest neighbors. The method of determining
the cluster binding energy [33, 76 ± 78] leans upon the fact that
the equilibrium distance Re for the pair interaction potential
is close to distances R0 and R between cluster nearest
neighbors, so that the total binding energy can be expanded
in powers of a corresponding small parameter. We demon-
strate this method for a bulk icosahedral cluster with the
interaction between nearest neighbors only, when the cluster
binding energy per internal atom is given by

e � ÿ3U�R� ÿ 3U�R0� ; �2:14�

where U�R� is the interaction potential of two atoms at a
distance R between them. We make use of the fact that each
internal atom has 6 nearest neighbors of the same layer at a
distance R0, 3 nearest neighbors of the preceding layer and
3 nearest neighbors of the next layer at a distance
R � 0:951R0, and we take into consideration the fact that
each bond is shared between two atoms. Expanding this
specific energy near the equilibrium distance Re, we obtain
from formula (2.14) the following relationship

e � 6Dÿ 1

2
U 00�Re�

��Re ÿ R�2 � �Re ÿ R0�2
�

and, by optimizing this energy, we arrive at the equation

Re ÿ R� qR0

qR
�Re ÿ R0� � 0 :

From the last relationship it follows that R � 0:974Re, and
R0 � 1:024Re, so that the asymptotic expression for the
specific binding energy has the form [33]

e0 � 6Dÿ 0:00189U 00�Re� : �2:15a�

The surface energy per atom for a short-range interaction
is esur � ÿ�3=2�U�R�. The number of surface atoms in an
icosahedral cluster equals 10m2, where m is the number of
filled layers in the closed icosahedral cluster, and the total
number of cluster atoms in this approximation reaches
n � 10m3=3. From this we obtain the cluster surface energy

Esur � ÿ15m2U�R� � ÿ15� �0:3n�2=3U�R� ;

with the result for the cluster's specific surface energy [33]:

A � 15� �0:3�2=3
�
Dÿ 1

2
�Rÿ Re�2U 00

�
� 6:72Dÿ 0:0022U 00 : �2:15b�

The popular pair interaction potential of atoms, which
contains simultaneously short-range and long-range parts, is
the Lennard-Jones interaction potential which has the form
[79, 80]

U�R� � D

��
Re

R

�12

ÿ 2

�
Re

R

�6�
: �2:16�

Here, R is the distance between atoms; the parameters D and
Re are, respectively, the depth of the potential well and the
equilibrium distance between atoms. It is convenient to use
the truncated Lennard-Jones interaction potential as a short-
range interatomic potential; this interaction potential is given
by formula (2.16), if two atoms are nearest neighbors, and is
zero for two atoms that are nonnearest neighbors. In the case
of the truncated Lennard-Jones interaction potential, we find
the following parameters from formulas (2.15) for a bulk
icosahedral cluster with filled layers [33, 77]:

e0 � 5:86D; A � 6:56D : �2:17�

Let us compare these parameters with parameters of the
optimal fcc structure and regular truncated hexahedron, for
which we obtain in the limit n!1, according to Table 5:
e0 � 6D,A � 7:55D. Distances between nearest neighbors for
a cluster of the icosahedral structure are in close agreement,
and a number of bonds between nearest neighbors is more for
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the icosahedral structure than that for a close-packed one.
Figure 4b depicts the size dependence for the specific surface
energy of the icosahedral cluster with atomic interactions
involving nearest neighbors only. It demonstrates the pre-
ference of filled cluster shells. The comparison of fcc and
icosahedral structures shows that for very large clusters the
fcc structure is energetically favored, whereas the optimal
cluster structure is the icosahedral one for not-so-large
clusters. The transition between these structures occurs in
the range of several hundred atoms, and there is indeed a
range of sizes for this transition, in which increasing the
cluster size by one atom may result in passing to the most
favorable structure. It is also important to recognize here that
these are purely energetic comparisons, so they relate to
stability at zero temperature and not necessarily at higher
temperatures.

Because the distances between nearest neighbors in the
icosahedral cluster are nearly identical, and an icosahedral
cluster is more compact than clusters with close-packed
lattices, the icosahedral structure can be more favorable for
large but not very large clusters. Let us demonstrate this for
the Lennard-Jones cluster consisting of 13 atoms. Taking into
consideration the cluster structure, we represent the total
binding energy of atoms in the form [67]

Eb

D
� 2C6

�
Re

R

�6

ÿ C12

�
Re

R

�12

: �2:18�

Table 6 lists the parameters of this formula for the
cuboctahedral, hexahedral, and icosahedral clusters, where
k is the total number of bonds between nearest neighbors, a is
the optimal distance between nearest neighbors,Eb is the total
binding energy of atoms for the optimal atomic configura-
tion, and these parameters are given by formulas

a � Re

�
C12

C6

�1=6

; Eb � C 2
6

C12
: �2:19�

As follows from Table 6, the icosahedral structure for a
13-atom cluster is preferred over the close-packed structures
because of the larger number of bonds between nearest
neighbors in the icosahedral cluster. In addition, the icosahe-
dral Lennard-Jones cluster shrinks more than the cuboctahe-
dral or hexahedral structures under a long-range interaction.
The interaction between nearest neighbors makes the main
contribution to the total binding energy of clusters in all these
cases. Comparing structures with close packing of atoms, one
can see that the hexahedral structure is moderately favorable,
but the distinction between the two close-packed structures is
small.

Comparison of the energies of the cuboctahedral and
icosahedral structures is convenient because these structures
are characterized by the same number of atoms in their closed
geometric figures, and therefore such a comparison allows the
competition between the fcc and icosahedral structures [53,

81 ± 83]. This comparison of closed structures with the
Lennard-Jones interaction potential shows that the cubocta-
hedral structure becomes more stable for sizes starting from
about 104 atoms in a cluster. But the cuboctahedral structure
is not optimal among the fcc structures, and hence compar-
ison of the energies of the cuboctahedral and icosahedral
structures does not allow us to draw conclusions about
competition of the fcc and icosahedral structures. Never-
theless, on the basis of comparison between the atomic
binding energies for the cuboctahedral and icosahedral
structures, one can ascertain the character of atomic interac-
tions in these structures. In particular, in the case of the
truncated Lennard-Jones interaction potential, we have for
the total binding energies of a cuboctahedral and an
icosahedral cluster the corresponding values 7476D and
7474D at zero temperature [33], if these clusters have 7 filled
layers or 1415 atoms (D is the binding energy per bond). In the
case of 8 filled layers or 2057 atoms in the cluster, these values
are 11040D and 11005D, respectively, whereas for clusters
containing 6 filled layers or 923 atoms, these total binding
energies of atoms at zero temperature are 4776D and 4793D
for the cuboctahedral and icosahedral clusters (see Ref. [33]).
One can see a weak dependence (a small increase) of the mean
binding energy per atom on the number of cluster atoms. We
add to this that the difference in the binding energies of two
structures is a nonmonotonic function of the number of
atoms, so one can infer that there is a wide range of
competition among these structures. In particular, this was
demonstrated in Refs [84, 85] by the competition among the
fcc and icosahedral cluster structures for the Morse interac-
tion potential between atoms, for which the binding energies
of cluster atoms and the optimal cluster structure depend on
the Morse parameter value. Figure 4a contains values of the
specific surface energies for fcc clusters with a short-range
interaction of atoms, and Fig. 4b gives the same value for
icosahedral clusters with a truncated Lennard-Jones interac-
tion potential, when only nearest neighbors interact. These
data testify to the competition between these cluster struc-
tures.

Comparison of the cuboctahedral and icosahedral filled
cluster structures is also useful in order to ascertain the role of
a long-range interaction. For the Lennard-Jones interaction
potential, the binding energies of atoms in clusters of these
structures consisting of 1415 atoms (or 7 closed layers) are
10309D and 10232D for the icosahedral and cuboctahedral
structures, respectively [82, 83]. Comparing them with those
for the truncated Lennard-Jones pair interaction potential,
when nearest neighbors only interact, for which the values are
7474D and 7476D, respectively, we find that the character of
the structure competition depends on the shape of the pair
interaction potential. Indeed, the structure is determined
primarily by the number of bonds between nearest neigh-
bors, but the difference in these values for competing
structures is relatively small throughout the range of competi-
tion. Hence, the smaller contributions, notably from non-
nearest neighbors, can play a determining role in the
competition. For example, the number of bonds between
nearest neighbors is 4902 for the icosahedral cluster consist-
ing of 923 atoms, whereas the optimal fcc cluster of this size
contains 4814 bonds between nearest neighbors [86, 87], and
the number of these bonds is 4776 for the corresponding
cuboctahedral cluster. Therefore, the favorable structure is
sensitive to the shape of the pair interaction potential in the
competition range [66, 85]. In addition, the number of bonds

Table 6. Energy parameters for different structures of Lennard-Jones
clusters involving 13 atoms.

Structure k C6 C12 Eb=D a=Re

Cuboctahedron
Hexahedron
Icosahedron

36
36
42

38.48
38.56
35.59

36.22
36.23
28.57

40.88
41.04
44.34

0.990
0.990
0.964
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between nearest neighbors varies in a nonregularmanner with
an increase in the number of atoms for the icosahedral
structure as a cluster layer is filling [77, 78], a consideration
that intensifies the structure competition. This fact follows
also from the energy calculations [88] for the icosahedral
Lennard-Jones clusters in the course of increasing the number
of atoms up to n � 147. This leads to expansion of the range
of structure competition. We note also that the hexagonal
structure is not important for the structure competition.
Indeed, at small cluster sizes where fcc and hexagonal
structures compete, the icosahedral structure is favorable,
whereas at moderate and large cluster sizes, where the
icosahedral and fcc structures compete, the hexagonal
structure is not favorable [33, 71].

Still another peculiarity in the competition among cluster
structures consists in structure mixing. In the case of close-
packed structures, the mixed structure of the crystal lattice
may simultaneously contain elements of face-centered cubic
and hexagonal structures, resulting in dislocations and
twinning (see, for example, Refs [65, 89]). Such structural
defects can be important for transitional structures of clusters
[56]. In clusters with a pair interaction, new possibilities for
mixing of structures arise due to competition between the
icosahedral and fcc structures. The most important mixing of
these structures [51, 52, 88] relates to the filling of cluster
layers when the icosahedral structure is favored, so that a
growing cluster has an icosahedral core. In the first stage of
filling, the new layers have the fcc structure, but it then
transforms into the icosahedral structure [77]. Indeed, an
atom being joined goes onto the cluster surface in a hollow
between three surface atoms, and the number of such
positions for the surface of an fcc-structure is more than
that for the icosahedral structure which requires places for
edge atoms. For the cluster withm filled layers, the number of
positions above each triangle is m�mÿ 1�=2 for the fcc layer
structure, and is only �mÿ 1��mÿ 2�=2 for the icosahedral
layer structure. Comparison of these surface structures shows
[77] that at the first stage of the filling of a new layer the fcc
structure of the layer is favored, and after filling 8 surface
triangles, the icosahedral structure of the layer being filled
provides the maximum binding energy of cluster atoms.

Thus, the analysis of clusters with a pair interaction of
atoms demonstrates the variety of cluster structures that can
be realized. Even for this simple character of interaction,
clusters can possess face-centered cubic, hexagonal, or
icosahedral structures, or their mixtures, and each structure
gives rise to different cluster shapes. At low temperatures,
when a cluster is solid, one can find the optimal configuration
of cluster atoms that leads to the maximum binding energy of
cluster atoms. Even for large clusters one can observe a size
rangewith alternation, with cluster size, of optimal structures,
so that a change in the number of cluster atoms by one can
change the optimal cluster structure. In addition, the optimal
configuration of cluster atoms in a range of competition can
contain elements of different structures.

2.5 Solid clusters of inert gases
In considering clusters with pair interactions, we are guided
by both clusters and macroscopic solids of inert gases.
Parameters of the interaction potential for two inert gas
atoms can be found from the analysis of physical properties
that depend on those atomic interactions. These quantities
are the differential and total elastic scattering cross sections of
two atoms, the second virial coefficients of inert gases, the

diffusion coefficients of atoms in their parent inert gas, the
thermal conductivity and viscosity coefficients, spectra of
excitation for dimers of inert gas atoms, and some parameters
of solid and liquid inert gases. As a result of measurements of
these quantities and their treatment, very reliable and precise
parameters of the interaction potential for two atoms of inert
gases have been determined [90 ± 93]. Table 7 contains the
parameters Re, the equilibrium distance for the diatomic
molecule consisting of interacting atoms, and D, the depth
of the interaction potential well. Based on these parameters,
we accept the short-range interaction as the dominant part of
the interatomic interaction in condensed inert gases [65, 76,
94]. This character of scaling implies the classical character of
atomicmotion in condensed inert gases, which is valid so long
as a typical vibrational energy �ho is small compared with the
binding energy of the atoms. This criterion assumes the form
�ho5D, i.e., the vibrational energy �ho is small relative to the
dissociation energy D, and can be rewritten for a diatomic
molecule as

D2 4
�h2

m
U 00 ; �2:20�

where m is again the atomic mass, U�R� is the interaction
potential of two atoms, and the derivative is taken near the
bottom of the potential well. This criterion is not well met for
many vibrational levels of the diatomicmolecules of neon and
argon, but for an assembly of many interacting atoms it is
satisfactory and a classical model is valid for clusters of all
inert gases except helium. (There are modest quantitative
deviations for neon in the region of solid ± liquid coexistence
[95, 96].)

Repulsion of interacting atoms at small interatomic
distances is determined by the exchange interaction potential
due to overlapping of atomic electron shells. The correspond-
ing interaction potential varies sharply with the variation of
the distance R between atoms, so that the pair interaction
potential is often approximated by the formula

U�R� � U�R0�
�
R0

R

�g

; �2:21�

with g4 1. (An exponential form, rather than a power-law
relation, is also frequently used; see the next section.) Table 7
collates the parameters of the repulsive interaction potential
for inert gas atoms [97], if U�R0� � 0:3 eV. Since in reality
g4 1, the collision of two inert gas atoms corresponds
moderately well to the hard sphere model, where atoms are
modelled by hard balls. (Note, however, that the Lennard-
Jones potential sets the exponent of the repulsive term to 12,
significantly larger than the values in Table 7).

Table 7. Parameters of the pair interaction potential for inert gas atoms
and the reduced parameters for systems consisting of interacting atoms of
inert gases.

Parameter Ne Ar Kr Xe

Re, A
�

D, meV
D, K
m, a.m.u.
p0 � D=R3

e , MPa
r0 � m

���
2
p

=R3
e , g cm

ÿ3

g
R0, A

�

3.09
3.64
42
20.18
20.2
1.606
7.6
2.07

3.76
12.3
143
39.95
37.1
1.764
8.1
2.85

4.01
17.3
200
83.80
43.0
3.051
7.7
2.99

4.36
24.4
278
131.3
47.1
3.718
5.9
3.18
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Because a variable of any dimensionality may be
composed from three dimensional parameters (see, for
example, Refs [98 ± 100]), we use the parameters D, Re, and
m for the inert gas atoms given in Table 7 in order to compose
parameters for condensed inert gases. Table 8 [101 ± 106]
contains measured parameters of solid inert gases and their
reduced values [65, 76, 94, 107], whose coincidence confirms
the validity of the similarity law for condensed inert gases
and, correspondingly, the dominant pairwise character of
atomic interactions in these systems. Here, a is the distance
between nearest neighbors in the crystal lattice at zero
temperature, r0 �

���
2
p

m=R3
e , m is the atomic mass, r�0� is

the crystal density at zero temperature, rsol is the density of
the solid inert gas at its triple point, Ttr and ptr are the
temperature and pressure at the triple point, and esub is the
binding energy per atom for the solid inert gas at the melting
point. Note that under commonly encountered conditions,
solid inert gas crystals have a face-centered cubic structure
[41, 67, 73, 74]. The hexagonal structure of solid inert gases is
observed in films formed on a special substrate [108 ± 110].
Along with the sublimation energy, we present in Table 8 the
atomic binding energy esol in the crystal, obtained on the basis
of the Clapeyron ±Clausius formula [4, 6], according to which
the equilibrium pressure of saturated vapor psat�T � over a
plane solid surface is given by

psat�T � � p0 exp

�
ÿ esol

T

�
�2:22�

at a temperature of T. (Note that throughout this article, we
express the temperature in energy units.) Coincidence of
reduced parameters for different inert gases characterizes
the accuracy of the scaling law for condensed inert gases, the
law that says that the properties of all inert gases are almost
the same when they and the conditions for them are expressed
in `reduced units', the units scaled to the conditions at the
triple point of each substance. Equivalently, the scaling law
says that the properties of the rare gases are essentially the
same if they are scaled as in Table 8.

One can compare condensed inert gases with models
based on simple versions of the pair interaction potentials.
In the case of the Lennard-Jones interaction potential (2.16),
the parameters of a solid crystal are [67]: a � 0:971Re, and
esub � 8:61D [see formula (2.11)], while in the case of a short-
range interaction, when only nearest neighbors interact, we

have a � Re, and esub � 6D. Comparing these values with the
data from Table 8, one can conclude that interaction in real
solid inert gases is close to that modelled by a short-range
interatomic interaction.

2.6 Bulk ensembles of repelling atoms
A bulk ensemble of atoms with a purely repulsive pair
interaction potential does not form a crystal lattice as do
atoms bound by a short-range attractive interaction. Even at
low temperatures, repulsive atoms do not form a crystal
lattice, so that the number q of nearest neighbors for a test
internal atom of this system differs from the value 12,
characteristic of a crystal with a close-packed structure.
Because the exchange interaction potential between atoms at
small distances is determined by the extent of overlapping of
their electron shells, it is frequently represented by a sharp
exponential dependence on the interatomic distance. Alter-
natively, a model of hard spheres [24, 111, 112] can be applied
effectively to describing the system of repelling atoms, the
model that is valid if g4 1 in formula (2.21).

It is convenient to characterize the distribution of spheres
in space by the packing density [38] given by the formula

j � 4p
3n

r3N ; �2:23�

where r is the sphere's radius, N is the density of spherical
particles, n is the number of atoms inside the sphere, and the
packing densityj is the fraction of the space occupied by hard
spheres. Evidently, the maximum value of this parameter for
hard spheres corresponds to a close-packed crystal lattice
when the packing density is given by

jcr �
p
���
2
p

6
� 0:74 : �2:24�

The packing density j for an ensemble of hard spheres
follows from simple experiments based on filling a container
with hard balls [113 ± 115] and on system simulations with
hard spheres [116 ± 118]. The observed value jd � 0:64 [114]
accords with a more precise value obtained from computer
simulations for the packing density of this system [117]:

jd � 0:644� 0:005 : �2:25�

This means that an ensemble of hard spheres does not
form a close-packed crystal lattice. Using the connection of
the mean coordination number q with the corresponding
atomic density r [76], namely

q � 12
rcr
r
; �2:26�

where rcr is the crystal density, and taking q � 12 for the
close-packed structure, we have on the basis of Eqns (2.23)
and (2.24):

q � 12
j
jcr

� 16:2j ; �2:27�

and formulas (2.25) and (2.27) give q � 10:4� 0:1 that is close
to the coordination number of liquid inert gases at low
pressures, in which atoms are bonded due to attractive
forces, and for which q � 10:1� 0:1 [33, 76].

Additional information follows from applying the virial
theorem [24, 119] to a system of repelling atoms. According to
the virial theorem, the higher the average number of nearest

Table 8. Parameters of solid inert gases and the reduced parameters near
the triple point [65, 76, 94, 107].

Parameter Ne Ar Kr Xe Average

a, A
�

a=Re

r�0�=r0
rsol, g cm

ÿ3

Ttr, K
Ttr=D
ptr, kPa
ptrR

3
e=D, 10ÿ3

esub, meV
esub=D
esol, meV
esol=D
esol=esub
p0, MPa
p0R

3
e=D

3.156
1.02
1.06
1.444
24.54
0.581
43.3
2.2
22
6.1
22.5
6.2
0.98
1800
89

3.755
1.00
1.00
1.623
83.78
0.587
68.8
1.9
80
6.5
80.2
6.5
1.00
4600
124

3.992
0.99
0.99
2.826
115.8
0.578
73.1
1.7
116
6.7
112
6.5
1.04
5600
130

4.335
1.01
0.98
3.540
161.4
0.570
81.6
1.7
164
6.7
158
6.5
1.04
4900
104

ì
1:005� 0:013
1:01� 0:04

0:579� 0:007

1:9� 0:2

6:5� 0:3

6:4� 0:2
1:02� 0:03

110� 20
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neighbors for an internal atom, the greater the total energy of
particles for a system of repelling particles. Therefore, the
crystal structure of repelling atoms is unstable with respect to
a decrease in the number of nearest neighbors, if this compact
system is supported by an external pressure. Indeed, the
crystal distribution of atoms at high pressures and low
temperatures is characterized by a higher energy than the
atomic distribution that does not have the regular, close-
packed structure of the crystal lattice. Because the entropy of
the less regular distribution is higher than that of the crystal
distribution, the crystal distribution of atoms at high
pressures and low temperatures is unstable towards a
structure of lower density.

Note that the system of repelling atoms at high pressures is
governed by a pair interaction between atoms, since repulsion
of interacting atoms is determined by the overlapping of the
wave functions of valence electrons. Consequently, this
interaction is created by the electron distribution near the
axis joining the interacting atoms, and the exchange interac-
tion potential of two atoms does not depend on the positions
of other atoms. Next, the interaction potential of two atoms is
small compared to a typical value of an electronic excitation
or ionization of an atom (the atomic ionization potential) that
restricts the range of pressures for which the foregoing
discussion is valid. For xenon, in particular, metallization is
expected at pressures of about 150GPa [120 ± 122]. Hence, the
pressure range under consideration here lies below this limit;
for other inert gases, this phase transition proceeds at higher
pressures. Note that the absence of the stable crystal lattice
for a system of repelling atoms does not mean the absence of
two aggregate states which are similar to the solid and liquid
aggregate states for a system of bound atoms. Below, we
consider both these aggregate states.

Thus, as demonstrated by modelling an ensemble of
repelling atoms by hard balls filling a container [38, 113 ±
115], and by computer simulation of the system of hard,
repelling spheres [116 ± 118], the system of strongly repelling
atoms does not form a crystalline lattice at high pressures and
low temperatures. Reliable information is also available from
X-ray diffraction investigations of compressed inert gases at
low temperatures. If we start from the crystalline state of an
inert gas and increase the pressure, a stacking instability [123,
124] develops in some pressure range that is reported to
induce a transition from the face-centered lattice to the
hexagonal lattice. For xenon at low temperatures, in
particular, a stacking disorder starts to appear at a pressure
of about 4 GPa ( p � 100p0). At pressures above 70� 5 GPa
( p � 2000p0), high-resolution X-ray diffraction studies show
the presence of only the hexagonal close-packed structure for
the system of repelling atoms [125]. But such measurements
highlight only one aspect of the atomic structure, namely, that
the correlation in positions of nearby atoms corresponds to
the hexagonal structure. Simultaneously, a pressure increase
reduces the long-range order of the structure, even while
nearby atoms remain correlated. This results in some
resonance-like maxima in the high-resolution X-ray diffrac-
tion pattern, but nevertheless the correlation length is
comparable to the distance between nearest atoms. Hence,
this does not prove that atoms form a regular hexagonal
crystal lattice.

On the basis of such investigations one can suggest that
the system of repelling atoms at high pressures consists of
individual domains Ð that is, solid clusters of fcc and
hexagonal structures (or one of these structures). These

clusters are presumably oriented randomly, with neighbor-
ing clusters connected by fixed `bonds'. Voids or vacancies at
the boundaries between neighboring clusters lower the
average number q of nearest neighbors in comparison with
that for the close-packed crystal for which q � 12. At high
pressures and very low temperatures, the average number of
nearest neighbors run into q � 10:4; this picture is not
consistent with one set of computer simulations by molecular
dynamics of xenon at high pressures [126]; however, for those
calculations, a regular, body-centered cubic structure was
assumed. Since the number of nearest neighbors is precisely
q � 8 for a body-centered crystal, the assumption of this
structure is in disagreement with our results and seems
incompatible with the evidence now available. Whether a
bcc structure would have enough local stability to be observed
is an open question at the present time.

The domain structure of an ensemble of repelling atoms
at high pressures, following from the results of computer
simulation and experiments, and the behavior of hard balls
in a container, means that some degree of order (probably
with some long-range character) in a hexagonal structure is
established, at least temporarily, for each test atom. For
estimating the length of this correlation at high pressures, we
compare this structure with an ensemble of noninteracting
clusters with the hexagonal structure, for which the magic
number of atoms n � 946 for the optimal hexagonal
structure Ð that is, a truncated hexahedron corresponding
to the average coordination number q � 10:5 [33, 65]. This
coincides with the coordination number q � 10:4 of nearest
neighbors for an ensemble of repelling atoms at high
pressures. Hence, the number of correlating atoms in a line
that links a test atom with its neighbors measures 4 ± 5, and
the total number of correlating atoms, we can infer, is several
hundred.

Thus, one can describe the character of evolution of the
solid inert gas structure resulting from compression in the
following way. At low pressures p5 p0 � D=R3

e , the crystal
has the fcc structure (q � 12); an increase in the external
pressure leads to a stacking instability which starts from
p � p0. As a result of this instability, regions of hexagonal
structure develop inside the crystal, at first for layers and later
for domains or small clusters. The random distribution in
cluster orientations produces a decrease of the packing
density j and of the mean coordination number q for this
system due to the formation of voids on boundaries of
structured clusters. Together with this, pairwise interactions
fix neighboring clusters. As a result, solid inert gases at high
pressures consist of small solid domains Ð clusters Ð so that
a bulk solid containing a large number of such domains has an
amorphous structure. Since interaction of adjacent domains
may be characterized in significant part by interaction of non-
nearest atoms (depending on the specific interatomic poten-
tial), their structure can be sensitive to the details of that
interaction potential. Consequently, the parameters of
strongly compressed rare gases at low temperatures can be
very different for various inert gases. Hence, the solid system
of strongly repelling atoms is characterized by order on the
scale of typical sizes of individual clusters, but it is amorphous
on large scales. Thus, in spite of the simple character of the
approximate model for interaction, the structure of solid
systems of repelling atoms is not so simple as one might
expect from general, simplistic considerations.

Additional information about the polycrystalline struc-
ture of a particle ensemble with a strong repulsion follows
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from investigations of colloid solutions. One can utilize a
solution with particulate material such that spherical particles
of virtually identical radius (up to 5%) are formed under
given conditions. This follows from the character of particle
charging that restricts their growth in the solution and selects
a certain particle size when they reach a critical degree of
mutual repulsion. This method, in particular, is used to
produce fractal aggregates consisting of solid monomers of
identical size by changing the acidity of the solution in which
solid colloid particles are formed (for example, gold colloids)
[127 ± 133]. Studies of crystallization in colloid solutions
[134 ± 136] concerned with colloid particles of 170 nm radius,
allowing one to detect the particle structure by light
scattering. It was confirmed that, for the packing parameter
values j < 0:494 common to the colloid solution, the
distribution of particles is random, whereas for j > 0:545
the colloid solution consists of a large number of randomly
oriented crystallites of size � 100 mm. At the same time, the
density of individual crystallites exceeds 106 cmÿ3 [136],
corresponding to a number of monomers in an individual
crystallite on the order of 4� 107.

These crystallites also demonstrate a random transition
between the hexagonal and fcc structures [136] that corre-
sponds to the onset of stacking instability in strongly
compressed inert gases. But gravitational forces and rates of
nucleation are important for formation and relaxation of
crystal structures in colloid solutions. This leads to an
additional value (j � 0:58) of the packing parameter for
which stability is seen in colloid solutions, which corresponds
to the so-called glass transition. This is the parameter value
above which a long-lived amorphous phase is stable, at least
locally, in a colloid solution. In addition, nucleation processes
giving rise to more structured forms start the freezing process
significantly at these values of the packing parameter.
However, under the gravitation-free conditions of a cosmic
experiment [137], crystallization of a colloid solution is
substantially enhanced at large packing parameters.

Thus, in spite of the simplicity of the representation of the
interatomic interaction we used initially, the structure of solid
systems of repelling atoms is not so simple as onemight expect
from that convenient but approximate model. In considering
the ensemble of repelling atoms, we assume it to be sustained
under external pressure, and that the transition between two
aggregate states proceeds at a constant pressure. Under these
conditions, the crystal lattice does not form at low tempera-
tures. But this result may be different under other external
conditions. In particular, this conclusion does not hold true
for a dusty plasma in which micron-sized charged particles
may be captured by a trap made of a gas discharge, as was
observed in experiments [138 ± 141] and was analyzed in some
reviews (see, for example, Refs [142 ± 146]). This electric trap
for charged particles may be the near-cathode region of a
high-frequency discharge or striations in a glow discharge; in
this case, the chargedmacroscopic particles interact with each
other through the Yukawa interaction potential. The
Yukawa potential comprises short-range interactions and
long-range screened Coulomb parts; with the strong screen-
ing of charges in a plasma (or large distances between nearest
particles), the long-range part makes a small contribution to
the total particle interaction, so that an ensemble of micron-
sized particles in a plasma trap becomes virtually identical to
a system of hard particles. Under certain conditions, this
ensemble is analogous to saturated solutions of charged
colloidal particles.

In contrast to an ensemble of repelling atoms, the particles
in a dusty plasma can form a crystal lattice under certain
conditions. Moreover, the phase transition between the solid
and liquid states in a dusty plasma can proceed in the form of
a wave [147], whereas in usual ensembles of interacting
particles the phase transition results from the growth of
nuclei of a new phase inside an old one [38]. One can roughly
explain the difference in behavior of these systems in terms of
the conditions under which they are found. The ensembles of
repelling atoms under consideration here are kept at constant
pressure, whereas an ensemble of charged particles in a dusty
plasma is best described as being in a potential well created by
an external source, whose parameters are determined par-
tially by the self-consistent field of charged particles. Hence,
in the latter case, we have more complicated boundary
conditions which may allow the pressure to change in the
course of the phase transition. As for the phase transition
wave, it can occur under a high degree of metastability
(overcooling of a liquid or overheating of a solid) that is
possible in a dusty plasma.

We note also the distinction between the aggregate states
at low temperatures for the ensemble of hard spheres and for a
system of particles interacting through the Yukawa potential.
The latter [148 ± 154] can have crystal structures at low
temperatures and small screening length, although in this
limit one can expect the behavior of the system of Yukawa
particles to be similar to that of the ensemble of hard spheres.
Possible, this contradiction should be resolved by computer
simulation simultaneously for both interaction potentials.

Thus, both a dusty plasma and a collection of Yukawa
particles can be considered representatives of simple ensem-
bles of interacting particles, and the analysis of their
aggregate states together with transitions between these
aggregate states may be joined in a general scheme. The
apparent contradictions or paradoxes just described can be
overcome with a more detailed analysis that will deepen our
understanding of the physics of aggregate states.

3. Phase transitions in simple systems
of bound atoms

3.1 The lattice model for the order ± disorder
phase transition
The nature of the phase transition between two aggregate
states in a condensed system of atoms has been interpreted on
the basis of the lattice model. Within the framework of this
model, we place atoms at sites of a crystal lattice, as shown for
the square lattice in Fig. 1. Denoting by n1 the number of
atoms at lattice sites, and by n the total number of sites, we
consider the limit of a large number of atoms (n1 !1), when
the atomic concentration is c � n1=n. We consider the
Bragg ±Williams approximation [3, 22, 23], a simple version
of the lattice model accounting for interaction of nearest
neighbors only. In the limit under consideration, when
nÿ!1, one can extract two types of atomic distributions
over the lattice sites, so that in the first the binding energy is
maximal; a random distribution with higher entropy corre-
sponds to the second type. In the first case, for a compact
atomic distribution, we obtain the total binding energy of the
system, qn1e0=2, where e0 is the binding energy per bond, and
q is the number of nearest neighbors for an internal atom.

Analyzing the randomdistribution of atoms over the sites,
the average number of nearest neighbors for a test atom is

April, 2005 Phase transitions and adjacent phenomena in simple atomic systems 359



determined to be qc, and the average binding energy is
qcn1e0=2 � qnc2e0=2. Therefore, the energy change as a
result of transition from the compact or ordered distribution
of atoms to a random distribution reaches

DE � q

2
nce0 ÿ q

2
nc2e0 � qe0

2
nc�1ÿ c� : �3:1�

In addition to this, the entropy of the random distribution of
atoms is equal to

S � ln
n!

n1!�nÿ n1�! � ÿn
�
c ln c� �1ÿ c� ln �1ÿ c�� ; �3:2�

and the change in the free energy DF as a result of the
transition between the ordered and disordered states is

DF � DEÿ TS � qe0
2

nc�1ÿ c�
� Tn

�
c ln c� �1ÿ c� ln �1ÿ c�� ; �3:3�

where we applied the Stirling formula and the condition
n1;2 4 1. This gives the temperature Tc of the phase transition
according to the relation DF �Tc� � 0:

Tc � qe0
2

�
ln �1=c�
1ÿ c

� ln
ÿ
1=�1ÿ c��

c

�ÿ1
: �3:4�

We note that in this treatment the concentration of atoms
c was fixed, but the number of unoccupied sites is a free
parameter of the problem. Since this parameter is not
connected with any specific properties of an ensemble of
bound atoms, the lattice model allows us to make qualitative
conclusions about the nature of the phase transition. There-
fore, we draw general conclusions from this analysis. Indeed,
we have two distributions of bound atoms in a loosely
confined space: a compact (or ordered) distribution of
atoms with a large total binding energy, and a random
distribution with a large entropy (or statistical weight).
Competition between these two forms leads the system to
equilibrate to themore thermodynamically stable state. From
this it follows that the phase transition is possible only under
conditions in which the aggregate state with the lower binding
energy is characterized by a large statistical weight. From this
standpoint, one can analyze and contrast atoms (as well as
small molecules) and clusters. Both systems possess shell
structures, but the excited states of atoms and small
molecules are sparse, so the statistical weights of their excited
states is not large, and therefore phase transitions are
impossible in such systems. This contrasts with the cluster
case. (It is possible, however, that ensembles of heavy atoms
with open electronic shells could show order ± disorder
transitions at temperatures high enough to produce a variety
of excited electronic states.)

One more conclusion from this treatment is the stepwise
character of the phase transition for an ensemble of many
bound atoms. Indeed, the ratio of the probabilities for the
ensemble to be found in the disordered and ordered state is
characterized by the factor exp�ÿDF=T �, where T is the
current temperature, and DF is the free energy difference for
the ordered and disordered aggregate states. The temperature
range in which the ordered and disordered states coexist (i.e.,
the probabilities for these states are comparable) is given by

dT
Tc
� Tc

DE
� 1

n
; �3:5�

i.e., the width of the transition range is inversely proportional
to the number of atoms. In the limit n!1, we obtain a
stepwise transition.

3.2 Structural transitions in solid clusters
The lattice model exhibits the character of the phase
transition between two states, so that the higher-energy state
has the larger statistical weight or greater entropy at
temperatures at which it is accessible. Consequently, at a
certain temperature an excited state becomes thermodynami-
cally favorable, and then the phase transition proceeds. Since
a large statistical weight of an aggregate excited state is
required for the phase transition, this process is the conse-
quence of transitions involving many particles of the system.
For this reason, a phase transition is impossible in small
systems because each atomic shell contains relatively few
electrons, but it is possible for large clusters in which many
atoms can be located in a shell or layer. The simplest phase
transition takes place between two solid cluster structures. In
particular, we consider here the structural transition between
the face-centered cubic structure and the icosahedral struc-
ture of clusters with a pair interaction of atoms. Above, we
analyzed the general basis for the competition of these
structures and established that for large clusters any of these
structures may be thermodynamically favorable, depending
on the pair interaction potential and cluster size.

Let us consider such a cluster for which the binding
energies of cluster atoms are similar for these two structures
at zero temperature, and the lower-energy structure is
characterized by its closed atomic shells. In this treatment,
we will be guided by a cluster of 923 atoms whose lower-
energy state has icosahedral structure with a closed outer
shell, and the excitation energy of the fcc structure is
comparable to the binding energy of one atom. Because an
fcc cluster of this size exhibits unfilled shells, it has a large
statistical weight g0 � 5544 at zero temperature for an fcc
cluster of 923 atoms [86, 87]. This is just the number of places
where the vacancies can be. The pairwise binding energies of
the two cluster structures are similar. For example, if we
invoke Morse interactions between atoms, the pair interac-
tion potential of the atoms is

U�R� � D
n
exp

�
2a�Rÿ Re�

�ÿ exp
�
a�Rÿ Re�

�o
; �3:6�

where Re is the equilibrium distance, and a is the Morse
parameter. Then the energies of the close-packed and
icosahedral structures coincide at aRe � 7:1 [84, 85]. Hence,
in the case under consideration aRe 4 7:1, so that in this
range the icosahedral structure generally has lower energy,
but the energy gap between structures is not large, and a
transition between these structures occurs at temperatures
well below the melting point Tm � 0:44D [155]. Variation of
aRe allows the control of the conditions of this cluster's
structural phase change, thus helping us to understand the
nature of structural phase transitions in solids.

When two structures compete, one can construct the
cluster's partition function Z on the basis of these two
structures:

Z � Zico � Zfcc ; �3:7�

where Zico and Zfcc are the partition functions for the
icosahedral and fcc structures, respectively. Taking the
statistical weight of the lower icosahedral state to be one, we
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have the connection between these partition functions:

Zfcc � Zico g exp

�
ÿ D
T

�
; �3:8�

where D is the difference in the ground state energies for these
structures, and g is the statistical weight of the fcc cluster. The
temperature at which the two phases have equal free energies,
which is the precise analog of the temperature of the bulk
phase transition Ttr between the two solid structures, is
determined from the condition of equality of the partition
functions for the two phases: Zfcc � Zico. If the energy
difference D for the ground states of these structures is small
enough, the statistical weight g corresponds to the ground
configuration state of the fcc cluster and comprises 5544. In
this limiting case, the transition temperature for the cluster of
923 atoms is equal to (we make use of the relation
Zfcc � Zico � Z=2)

Ttr � D
ln g� ln�Zfcc=Zico� � 0:104D : �3:9�

Let us find the dependence of the structural transition on
thermodynamic parameters of the cluster. We concentrate on
the cluster's heat capacity under conditions that the config-
urational excitation is in equilibrium with thermal vibrations
of cluster atoms, i.e., these degrees of freedom are character-
ized by the identical temperature T. Evidently, the configura-
tional part of the cluster's heat capacity has a resonant-like
structure Ð that is, it exhibits a maximum. We will focus on
this aspect, relating the partition function (3.7) to configura-
tional excitation and representing it in the form

Z �
X
i

gi exp

�
ÿ ei
T

�
; �3:10�

where ei and gi are the excitation energy and statistical weight
of a given configurational excitation of the cluster, respec-
tively, and the configurational part of the heat capacity is
given by

C � qE
qT
� q

qT

�
1

Z

X
i

ei Zi

�
� E 2

T 2
ÿ
�
E

T

�2

; �3:11�

where E and E 2 are the average and mean square values of
the configurational excitation energy of a cluster, respec-
tively. Separating configurational excitation for the icosahe-
dral and fcc structures and substituting formula (3.10) into
formula (3.11), we represent the cluster's heat capacity in
the form [86, 87]

C � Zico

Z
Cico � Zfcc

Z
Cfcc � 1

T 2

Zico Zfcc

Z 2

ÿ
eico ÿ efcc ÿ D

�2
:

�3:12�

Here, Zico and Zfcc are the total partition functions for the
corresponding cluster structures, Z is the total partition
function according to Eqn (3.7), and Cico and Cfcc are the
heat capacities for each cluster structure, when the other
cluster structure is absent. In the last term, eico and efcc are the
average excitation energies for a given cluster structure in
which the ground configuration of this structure corresponds
to zero energy. The last term possesses a resonant structure
near the transition temperature (3.9) at which formula (3.12)

takes the form

Cmax � 1

2
�Cico � Cfcc� �

�
D

2Ttr

�2

exp
�ÿ a�Tÿ Ttr�2

�
;

a �
�

D
2T 2

tr

�2

; �3:13�

and the `resonance' corresponds to Zico � Zfcc � Z=2. Defin-
ing the resonance width as DT ��1=a�1=2, we obtain

DT � 2T 2
tr

D
: �3:14�

In particular, for a cluster consisting of 923 atoms and a small
difference D between the energies of the two structures, we
obtain DT=Ttr � 0:2.

Although we are guided here by small D, when the
maximum in the heat capacity is observed at low tempera-
tures, one can extend this approach to largerD, but to do that,
we must take into account configurationally excited cluster
states for each structure. This step was made in Refs [86, 87].
Figure 5 exhibits the behavior of the configurational heat
capacity in the temperature range, below the melting point
[86]. In this temperature range a restricted number of cluster
configurations are excited. Clearly, the maximum heat
capacity increases with an increase in D.

The structural transition also influences other thermo-
dynamic properties of the cluster. The entropy undergoes an
abrupt change associated with the structural transition as it
passes from its value for the first structure to that for the
other. Because an excited structure is characterized by a
higher entropy, the structural transition as a result of a
temperature elevation leads to an entropy increase in a
stepwise manner. In particular, if we return to the case of a
cluster with 923 atoms andwith a small energy gap between its
two relevant structures, the abrupt change in entropy as a
result of the transition from the icosahedral cluster structure
to the fcc structure is DS � ln g � 8:6. This entropy jump
must increase with an increase in the energy gap D, but its
order of magnitude is conserved, i.e., DS � 10.

Thus, we find that the structural transition leads to a
maximum in the cluster's heat capacity and to an abrupt
change in the cluster's entropy. Of course, corresponding
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Figure 5. The heat capacity of a solid cluster consisting of 923 atoms as a

function of the temperature [86, 87]. The ground state of this cluster at zero

temperature corresponds to the closed icosahedral structure, and D, the
excitation energy of the ground state of the fcc structure, is equal to (in

units of breaking one bond): 1 (1), 2 (2), 3 (3), 4 (4).
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changes occur in the other thermodynamic parameters as
well. Let us compare these changes with the thermodynamic
parameters due to atomic vibrations in the cluster. In the
Debye approximation, in particular, the cluster entropy at
moderate temperatures is given by [6]

Svib � 3n

�
ln

T

�hoD
ÿ 1

�
; T4 �hoD ; �3:15�

where oD is the Debye frequency (the maximum or cut-off
frequency in the model), and n is again the number of cluster
atoms. In particular, for a cluster of 923 atoms, this formula
gives Svib � 1000. One can see that this value significantly
exceeds the entropy jump due to a structural transition.
However, the vibrational entropy does not change very
much at all in the transition, typically increasing only slightly
as a few modes drop in frequency as the system goes to the
high-temperature phase, due to void spaces that soften local
vibrational modes. This is a general result for large clusters.
Any phase transition in a cluster influences its thermody-
namic parameters through the appearance of resonance-like
maxima and abrupt changes at the phase transition tempera-
ture. But if one looks only at the configurational contribu-
tions directly associated with the transition process and
neglects the thermal motion of atoms, it is easy to overlook
the fact that the changes in the cluster's thermodynamic
parameters due to the phase transition are small in compar-
ison with their total values due primarily to the thermal
motion of the atoms. The analysis of the structural transition
in a cluster consisting of 923 atoms [86, 87] confirms this
statement. Nonetheless, because the phase transition itself is a
reflection of changes predominantly in conégurational prop-
erties, the vibrational contribution to the changes in thermo-
dynamic properties is typically less important than the
conégurational part.

The importance of the structural transition in large
clusters decreases with cluster size because such a transition
requires spontaneous reconstruction of the cluster's structure
at low temperatures. Under those conditions, reconstruction
proceeds extremely slow, so that conditions of thermody-
namic equilibrium can be violated for a very long time. It
follows that the structural transitions in very large solid
clusters are usually not especially important.

3.3 Phase transitions in a system
of strongly repelling atoms
An ensemble of repelling atoms constitutes a system with
pairwise atomic interactions that models the behavior of inert
gases at high pressures. In considering such systems at low
temperatures, we deduced that the symmetric, crystalline
distribution of atoms is not realized at thermodynamic
equilibrium. Nevertheless, a solid ± liquid phase transition
does occur in these systems, so that a general statement by
Stishov [156] may be fulfilled, namely that the melting curve
in the pressure ± temperature phase diagram of this system
need not terminate at a critical point, but may continue up to
high temperatures and pressures. At high pressures, the
phases that this curve separates are not the crystal and liquid
states as it does at low pressures. Rather, both states of this
phase transition correspond to disordered distributions of
atomic particles; they are states of dense and loose packing
structures [38]. This enables us to describe the phase
transition in a bulk system of repelling atomic particles on
the basis of the changes in density and coordination number

q, the number of nearest neighbors for an internal test atom.
The extent of short-range order in each of these phases is, at
present, unknown.

Information about the phase transition in a bulk ensemble
of repulsing atoms may be extracted from experimental data
[123, 157 ± 162] for compressed inert gases and from computer
simulation [116 ± 118,163, 164]. Analyzing computer simula-
tion, we are guided by the pair interaction potential (2.21)
whose parameter g characterizes its steepness. The passage to
the limit g!1 corresponds to the hard sphere model, and
within the framework of this model the phase transition
between the states of dense random packing structure (dr)
and loose random packing structure (lr) corresponds to the
following values of the packing density [116 ± 118] given by
formulas

jdr � 0:545 ; jlr � 0:494 : �3:16�

On the basis of formula (3.16), we find that qdr � 8:8 is the
number of nearest neighbors of a test atom in the dense
random packing state in the melting curve, and qlr � 8:0 for
the loose random packing state. If we construct the melting
curve for various pressures for a condensed system such as a
condensed inert gas, we move with increasing pressure from
the crystalline solid state to the dense random packing
structure which must lie on the dense portion of the melting
curve. Therefore, although crystalline order is absent in the
dense random structure, it starts from the ordered state. At
the present time, it is not clear whether the transition from
crystalline to dense random packing structure is a continuous
transition or involves an abrupt change, in effect a first-order
structural transition, from crystalline to a state with a definite
finite degree of disorder. In contrast to the dense random
state, the loosely packed random structure starts from a
disordered state at low pressures, typically liquid. Hence, it
is convenient to connect the dense random packing structure
with the close-packed crystal structure, and the loose random
packing structure with the liquid state in which there is no
periodic long-range order and one can describe the system in
terms of its average continuous homogeneity. In addition, if
we move at high pressures from zero temperature to the
melting point, the number of nearest neighbors decreases
from q � 10:4 to qdr � 8:8.

An additional understanding of the structures of the
particle ensemble with a strong repulsion follows from the
study of colloid solutions involving particles of almost
identical sizes and, correspondingly, of almost identical
charges. Then, for j < 0:494, a random distribution of
colloid particles is observed that corresponds to the liquid
aggregate state, whereas for j > 0:545 the colloid solution
consists of a large number of randomly oriented crystallites,
each of them including a large number of colloidal particles.
In an intermediate range of packing parameters, the colloid
solution consists of amorphous and polycrystal phases which
are separated by sharp boundaries [134, 136].

For finite values of the parameter g in the interaction
potential (2.21), the values of various parameters in the
melting curve may be estimated on the basis of a typical
length d that follows from the relation U�d � � T and is given
by

d �
�
A

T

�1=g

; �3:17�
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where T is the temperature in the melting curve. Introducing
the pressure p, the volumes per atom for the dense random
packing (solid) and loose random packing (liquid) states Vdr

and Vlr, respectively, the change of the reduced volumes DV
upon melting (DV � Vdr ÿ Vlr), and the entropy change per
atomDS, we obtain the scaling law for themelting curve [156]:

p � T

d 3
; DV � Vdr � Vlr � d 3 ; DS � 1 : �3:18�

Table 9 gives the parameters in the melting curve for a
system of atomic particles with the interaction potential (2.21)
for various g, obtained on the basis of numerical calculations
[164]; the equation connecting the pressure p and temperature
T in the melting curve is, of course, the usual equation for
phase coexistence. From the data in Table 9, it follows that
the volume change between dense and loose random states,
DV � Vdr ÿ Vlr, is small compared with each term of the
expression. Next, also from Table 9, the packing densities in
the coexistence curve in the limit g!1 coincide with those in
formulas (3.16).

Experimental approaches to constructing the melting
curve for inert gases at high pressures are based on the
method of the diamond-anvil cell containing an inert gas
compressed by a laser beam. The laser beam heats the inert
gas inside the diamond cell through its metal substrate, and is
used to measure the inert gas pressure and temperature in the
course of its heating. The melting point is found from a
change in the optical properties of the compressed, condensed
inert gas. This method allows us to analyze pressures up to
100GPa, two orders ofmagnitude higher than those available
to classical methods of gas compression (see, for example,
Refs [157 ± 160] covering the case of argon).

Even at the highest pressures, the kinetic energy of atoms
in the melting curve is small compared to the electronic
excitation energy or the ionization potential of these atoms.
Hence, thermal electronic excitation and ionization of atoms
in themelting curve under consideration is small and does not
influence the phase transition. At very high pressures,
compression of inert gases creates such strong overlap of the
wave functions of valence electrons that it can induce a
transition from the insulating state to the metallic state. This
effect is especially strong for xenon, for which the transition
to the metallic conductivity is expected at 130 ± 150 GPa
[120 ± 122]. In reality, this transition proceeds over a wide
pressure range and evidently depends on the temperature.
This effect can, of course, affect the behavior of the melting
curve. Moreover, one can expect that the observed decline of
the melting curve T� p� for xenon at pressures above 15 GPa,
and for krypton at pressures above 25 GPa, can also be
attributed to this effect.

In order to escape the influence of metallization at high
pressures on the behavior of the melting curve, we consider

the melting curve of compressed argon (Fig. 6). This figure is
based on experimental data [123, 161, 162] which are
approximated by the following expression for the argon
melting curve:

dp

dT
� 4� a

��
T

Ttr

�k

ÿ 1

�
: �3:19�

In this formula, the derivative dp=dT is measured in
MPa Kÿ1, and Ttr � 83:8 K is the argon triple point. We
take this derivative at Ttr to be 4 MPa Kÿ1, as follows from
the Clapeyron ±Clausius and Simon equations for argon [94].
The parameters of formula (3.19) are a � 2:1, and k � 0:78.
One can see that this derivative varies by one order of
magnitude (from 4 up to 37MPaKÿ1), when the temperature
along the melting curve varies over the temperature (or
pressure) range under consideration, from Ttr up to 3400 K.
The melting curve for argon is given in Fig. 6 at high
pressures, as constructed from the data in Table 9. We see
that this theoretical curve is located above and close to the
melting curve that approximates experimental results.

Let us now analyze the behavior of compressed inert gases
up to the highest pressure at which one can consider them as a
system of independent atoms. Evidently, this limit follows
mainly from the atomic structure and corresponds to the
pressure below which we can ignore excited atomic states and
metallization. In reality, when the pressure is very high
indeed, the electronic bands of the ground and excited states
approach each other as the pressure increases. When these
bands become close enough to an extent that metallic
conductivity begins, electronic processes become important,
and this scheme terminates. As said previously, for xenon,
this transition tometallic conductivity is expected at pressures
130 ± 150 GPa [120 ± 122]; for other inert gases the limiting
pressures are higher, and the foregoing analysis is valid below
these pressures.

Thus, the phase transition in a bulk ensemble of repelling
atoms is similar to the phase transition in a condensed system
of bound atoms, i.e., an order ± disorder or solid ± liquid
transition. But in contrast to the latter, the phase transition

Table 9. Parameters of the phase transition between the solid or dense
random packing state (index dr) and liquid or loose random packing state
(index lr) for a system of repelling atoms (taken from Ref. [164]).
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Figure 6. The melting curve for condensed argon. Experimental data:

black diamonds, squares, and crosses [123, 161, 162]. The black circle is the

triple point, and the solid curve is constructed on the basis of these data,

and its derivative is given by formula (3.19). White circles correspond to

calculations according to the data from Table 9 with the interaction

potential (2.21) whose parameters are given in Table 7.
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in a bulk ensemble of repelling atoms proceeds between two
random distributions of atoms. In addition, according to
experiments and computer simulations, a general statement
by Stishov [156] is fulfilled, namely that the melting curve in
the pressure ± temperature phase diagram for a bulk ensemble
of repelling atoms does not need terminate at a critical point,
butmay continue up to high temperatures and pressures, until
other interaction effects will not act.

4. Configurational excitation in clusters
with pairwise atomic interactions

4.1 Peculiarities of configurational excitation of clusters
We now consider the evolution of a cluster as motion of a
point along a potential energy surface in a phase space of
atomic coordinates. The potential energy surface for a cluster
contains many minima separated by saddles; the number of
local minima increases sharply with cluster size [11, 12, 14 ±
16]. These include both the minima corresponding to
geometrically distinct structures, which typically increase at
least exponentially with the number of particles n, and the
permutational isomers, which increase approximately as n!.
Hence, one can (in principle) describe the cluster's evolution
as a result of transitions between local minima of the potential
energy surface, passages that correspond to saddle-crossing
dynamics [10, 13, 18, 20]. Within the framework of this
description, the cluster remains near a given minimum of the
potential energy surface relatively long, since its average total
kinetic energy is lower than typical saddle heights. We may
characterize a configurational state of this system by the local
minimum of the potential energy surface, near which the
cluster is found for a time long compared with a typical
oscillation period near this minimum. Because the dwell times
around local minima are typically long compared with
vibrational periods and even with vibrational relaxation
times, we may suppose that the configurational cluster state
is independent of the atomic (vibrational) kinetic energy. In
other words, one can separate the configurational and
vibrational cluster excitations as independent degrees of
freedom.

This is the basis of our treatment in which we divide
cluster excitation into configurational and vibrational parts
and assume these parts to be independent. (Of course, they are
ultimately coupled on sufficiently long time scales.) Next, to
simplify the description of configurational excitation, we
introduce a void as an elementary configurational excita-
tion, so that any configurational excitation results from
formation of one or more voids. Then one can express the
parameters of the phase transition and other cluster proper-
ties through parameters associated with voids being formed.
Therefore, our task is to find the void parameters and to
express through them the parameters of the cluster phase
transition.

Assuming the motion of cluster atoms to be classical, we
represent the energyE of a cluster consisting of n atomswith a
pair interaction between them in the form

E � U� K �
X
i; j

u�ri j� �m

2

X
i

�
dri
dt

�2

: �4:1�

Here, U is the total potential energy, K is the total kinetic
energy of atoms, and u�ri j� is the pair interaction potential
between atoms at a distance ri j � ri ÿ rj, so that ri, rj are the

atomic coordinates, andm is the atomic mass. This formula is
the basis for the analysis of computer simulations of clusters.
Let us consider the properties of two terms in this formula,
taking into account that thermal equilibrium is established
for atomic vibrations, as usually takes place. This allows us to
introduce the vibrational temperature T, considering the
motion of atoms as that of a set of harmonic oscillators. In
particular, in the limit of high temperatures, when a typical
atomic kinetic energy significantly exceeds a typical small-
amplitude vibrational energy (or the Debye temperature), the
Dulong ±Petit law is valid, according to which

K � �3nÿ 6�T
2

; �4:2�
and we include in this expression the vibrational degrees of
freedom for a cluster as a system of bound atoms. We will
focus on conditions set in the limiting case n4 1. The global
minimum of the complex potential energy surface corre-
sponds to the cluster's ground state, i.e., its equilibrium state
at zero temperature. Transitions from the global minimum to
other local minima, corresponding to configurational excita-
tions of the cluster, are responsible for a phase transition,
whether from one solid form to another or from solid to
liquid.

In analyzing the behavior of cluster atoms, we are guided
first by the results of computer simulations of the Lennard-
Jones cluster consisting of 13 atoms [8], in which this cluster is
considered a member of a microcanonical ensemble of bound
atoms [4], i.e., it is isolated and the total cluster energy is
conserved during the cluster's evolution. There is a range of
temperatures and pressures in which the distribution of short-
term-average total kinetic energy of the cluster exhibits a
bimodal distribution. In that range, one can treat the results
of computer simulations [8] in terms of a dynamic equilibrium
of two aggregate states. It was fulfilled partially in Refs [33,
76, 165], and below we give the results of this treatment. The
structure of the ground state of this cluster [166] at zero
temperature and the character of its configurational excita-
tion in the lowest excited states are shown in Fig. 7a. The
simplest configurational excitation corresponds to promotion
of one atom from the shell of 12 atoms onto the hollow
between three atoms on the cluster surface, as shown in
Fig. 7b. For this transfer, an atom must overcome a barrier;
likewise, transitions to other positions on the cluster surface
are accompanied by overcoming the energy barriers. Figure 8
gives the energies of states for one-atom transitions at zero
temperature and the values of barriers which separate them
[167]. Increasing the energy facilitates transitions between
different stable positions on the cluster surface, as well as

a b

Figure 7. The structure of the icosahedral cluster consisting of 13 atoms in

the ground configuration state [166] (a), and configurational excitation of

this cluster (b).
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exchanges between states of a configurationally excited
cluster. All the configurationally excited states of this cluster
in the liquid state are connected with transitions of one atom
at a time, so that the system may go through all permutations
among the atoms of any attainable structure, as follows from
the data in Fig. 9.

Let us represent formula (4.1) in the form

E � E0 � Eex � U 0sol � Ksol � DE�U 0liq � Kliq ; �4:3�

where E0 is the binding energy of cluster atoms in the ground
configuration state at zero temperature, Eex is the total
excitation energy, Ksol and Kliq are the total kinetic energies
of atoms for the solid and liquid cluster states, respectively,
U 0sol and U 0liq are the average potential energies of the cluster
for a given aggregate state, and DE is an average excitation
energy for producing the liquid aggregate state. Within the
framework of this formulation, we join nearby local minima
of the cluster's potential surface into one aggregate state,
assuming transitions between local minima of the same
aggregate state to be more effective than transitions between
states which belong to different aggregate states. That is, we
suppose that it is easier to move a void from one site to
another than to create or destroy a void.

Figure 10 gives the probability that the Lennard-Jones
cluster consisting of 13 atoms has a given total kinetic
energy [8]. The bimodal character of this distribution at
intermediate excitation energies testifies to the existence of
two aggregate states, namely, the solid and the liquid. At
low excitation energies, the solid aggregate state is only
realized, whereas at high excitation energies only the liquid
aggregate state exists. Of course, the total kinetic energy of
atoms is averaged over time, so that oscillations due to
vibrations of individual atoms are excluded from considera-
tion. Thus, the time of such averaging must be brief
compared to the typical time interval for transitions
between aggregate states, but long compared with the time
for coupling vibrational modes. This allows us to separate
cluster aggregate states. For clusters in the size range from
roughly 10 to several hundred atoms, averaging over many

dozen vibrational periods accomplishes this and separates
the time scales for thermal equilibration very conveniently
from that for passage between aggregate states. Dynamic
coexistence of aggregate states at intermediate excitation
energies is simply the phenomenon that for part of the time
a cluster is found in one aggregate state, and for the rest of
the observation time it is found in another aggregate state.
Clusters of many kinds exhibit the bimodal character shown
in Fig. 10, i.e., residence times in each phase are long
enough to establish properties we normally identify with a
bulk phase, such as the diffusion coefficient and pair
correlation function. Some clusters, e.g., Ar15, pass between
the phase-like forms too rapidly to develop such character-
istic properties; these would appear in experiments to
behave as a sort of slush in what would otherwise be the
region of phase coexistence. This latter class of clusters has
not yet been studied in depth. (In fact, clusters may exhibit
dynamic coexistence of more than two phases [171, 172].)

We introduce the effective temperature for a given
aggregate state of the cluster on the basis of a transformation
of formula (4.2):

T � 2

3nÿ 6
K � 2K

33
; �4:4�

where n � 13 is the number of cluster atoms, and we assume
an atomic thermal energy is large in comparison with a typical
excitation energy of atomic vibrations. The energy part Z
related to the kinetic energy of atoms is given by

Zsol �
Ksol

Eex
; Zliq �

Kliq

Eex ÿ DE
: �4:5�
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Figure 9. Structures of the lowest excited states for the Lennard-Jones

cluster consisting of 13 atoms [167], which correspond to the lowest local

minima of the potential energy surface (a), and to the saddle structures (b)

for this cluster. Excitation energies of these structures and energy barriers

are expressed in the binding energies per one bond. Arrows indicate
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If atomic motion is representable as a combination of
motions of harmonic oscillators, we have Z � 0:5. Anharmo-
nicity of the oscillations typically leads to a decrease in this
value, and Z�E� decreases with an increase in Eex. Figure 11
gives this dependence which was obtained [76] on the basis of
computer simulations [8] for an isolated 13-atom cluster.
Note that Zsol�Eex� � Zliq�Eex� within the limits of their
accuracy, while this quantity has different values for the
solid and liquid states at identical temperatures. This is
because the value of Z can be supposed first to be
Z�Eex � 0� � 0:5 if the system were to be described in terms

of harmonic oscillators, but in a real system it decreases
monotonically with increasing excitation energy because of
the increasing role of anharmonicity. Hence, the parameter Z
characterizes the influence of the anharmonicity on the
atomic motion of an isolated cluster as the excitation energy
increases.

From these data, we infer the excitation energy of the
cluster's liquid state in the melting range:

DE � Ksol ÿ Kliq

Z�Eex� � Eex

�
1ÿ Kliq

Ksol

�
� 2:49� 0:05 : �4:6�

This suggests that the entropy jump DSm at the temperature
of equal free energies, the analogue of the bulk melting point
Tm � 0:29D, is equal to DSm � 8:6� 0:2. Figure 12 shows
how the temperatures of the solid and liquid cluster states
depend on the excitation energy for the Lennard-Jones cluster
consisting of 13 atoms. These data are obtained on the basis
of formula (4.4) applied to results of computer simulations [8]
of this cluster. The effective cluster temperature Tcon of the
configurational excitation is determined from the equilibrium
population ratio of the solid and liquid cluster states using the
formula

wliq

wsol
� exp

�
ÿ DF
Tcon

�
� exp

�
ÿ DE
Tcon

� DS
�
; �4:7�

where wsol and wliq are the probabilities for the cluster to be
found in the solid and liquid states, respectively, andDF is the
free energy jump at melting. It follows from Fig. 12 that the
effective configurational temperature Tcon tends to the solid
temperature defined by formula (4.4) in the limit of low
temperatures, and to the liquid temperature in the limit of
high temperatures.
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Figure 11. The dependence on the excitation energy for the energy part

related to the kinetic energy of atoms for an isolated Lennard-Jones cluster

consisting of 13 atoms. This quantity is identical for the solid and liquid

cluster states. The arrow indicates the excitation energy of the phase

transition, where wsol � wliq.
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4.2 Approach of two aggregate states
A cluster consisting of bound atoms has many configuration-
ally excited states. It is convenient to join them in groups, so
that excited states with similar excitation energies are joined
in one group. Often one can obtain in this manner two (or
more) groups of configurationally excited states, so that the
probability of finding a cluster located in one or the other of
these states dominates the population distribution. In
particular, in this way we find the solid and liquid aggregate
states for the Lennard-Jones cluster consisting of 13 atoms
(see Fig. 10). We next consider this form of the cluster
distribution function, assuming the existence of two cluster
aggregate states, i.e., supposing the probability of finding
other configurational excitations with our cluster parameters
to be small.

Let us consider an isothermal case in which the ensemble
of clusters is located in a thermostat. This can be achieved
experimentally by placing the clusters in a bath of helium
atoms that collide with clusters in a chamber with metallic
walls maintained at a desired temperature; such experiments
have been carried out [173, 174]. In this way, the wall
temperature becomes the cluster temperature. We introduce
the liquid aggregate state probability [33, 76, 165]

wliq � p

1� p
; p � exp

�
ÿ DF

T

�
� exp

�
DSÿ DE

T

�
;

�4:8�

where T is the cluster temperature coinciding with the
thermostat temperature, DE is the energy of configura-
tional excitation, DS is the entropy jump as a result of
melting, DF is the change in free energy, and we assume the
cluster to be a member of canonical ensembles. The
parameters DE and DS of the phase transition determine
the behavior of the cluster heat capacity in the range of the
phase transition. Using the average atomic kinetic energy
for each aggregate state, we characterize each cluster
aggregate state by a certain potential energy, i.e., we ignore
the broadening of the energy of each cluster state due to
fluctuations.

We determine below the cluster heat capacity and separate
its resonance part related to the phase transition. We have,
according to formula (4.3), the following relationship

E � Ksol

Zsol
wsol � DEwliq � Kliq

Zliq
wliq ;

and since the cluster is in a thermostat, Ksol � Kliq. Assuming
Zsol � Zliq, we obtain the average cluster energy according to
formula (4.1):

E � Ksol

Zsol
� DEwliq � Ksol

Zsol
� DE

p

1� p
: �4:9�

Hence, the cluster heat capacity consists of two parts:

C � dE

dT
� C0 � d�DEwliq�

dT
; �4:10�

where the first is given by

C0 � d�Ksol=Zsol�
dT

� d�Kliq=Zliq�
dT

; �4:11a�

and the resonance part of the heat capacity is [33, 165]

Cres � d�DEwliq�
dT

� DE 2

T 2

p

�1� p�2 : �4:11b�

Here, we assume that the energy of configurational excitation
DE and the entropy jump DS are independent of the
temperature. Formula (4.10) leads to the maximum Cmax

res at
the melting point Tm defined in this case through the equality
p�Tm� � 1. We have

Cmax
res �

DE 2

4T 2
m

� DS 2

4
: �4:12�

Let us introduce the temperature dependence of the
entropy jump in the form [175]

DS � DS0 � aT ; �4:13�

with DS0 being the entropy jump at zero temperature. This
gives, at the melting point, the relationship

a � DSm ÿ DS0

Tm
; �4:14�

where DSm is the entropy jump at the melting point.
Substituting this into formula (4.12), we get

Cmax
res �

DS 2
m

2
ÿ 1

4
DS0DSm : �4:15�

This formula can be used for determining DSm from other
parameters, so we have [175]

DSm � DS0

4
�

����������������������������
DS 2

0

16
� 2Cmax

res

s
: �4:16�

Thus, we divide the entropy abrupt change at the phase
transition into two parts, so that the first, DS0, is due to
configurational cluster excitation at zero temperature, and
the second part DSm ÿ DS0 is determined by the difference in
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Figure 12. The translational temperatures for the solid and liquid cluster

aggregate states, the average translational temperature according to

formula (5.21a), and the configurational temperature Tcon that follows

from the ratiowliq=wsol and is given by formula (5.22). These temperatures

relate to the Lennard-Jones cluster consisting of 13 atoms and are

obtained on the basis of data from Fig. 10.
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the entropies of the two aggregate states due to the thermal
motion of atoms. Formula (4.16) connects these two con-
tributions to the entropy at the melting point.

On the basis of computer simulations, one can find
separately the entropy jumps DS0 and DSm at zero tempera-
ture and at the melting point; these are given in Table 10 for
the clusters considered here. The statistical weight of
configurational excitation of a cluster consisting of 13 atoms
(see Fig. 7a [166]) is equal to g0 � 12� 15, where the first
factor is the number of surface atoms, and the second factor is
the number of positions to which the promoted atom can go
on the cluster surface, if the new vacancy and the excited atom
are not adjacent. Correspondingly, the entropy jump for this
transition is DS0 � ln g0 � 5:2. We note that the contribution
DSÿ DS0 from thermal vibrations to the total entropy jump
DS increases with increasing temperature, as does the
anharmonicity of vibrations in accordance with Fig. 11.
Evidently, the vibrational anharmonicity makes a contribu-
tion to the entropy jump also.

Considering the approximation of two aggregate states
[165], we have for the total partition function of a cluster, both
isolated (at constant energy) and under isothermal condi-
tions, the following relation

Z � Zsol � Zliq ; �4:17�

where Zsol and Zliq are the partition functions for the solid
and liquid cluster states, respectively. This means that the
probability is small for intermediate configurationally excited
states which cannot be associated clearly with either the solid
state or the liquid aggregate state. Introducing the parameter

p � Zliq

Zsol
; �4:18�

we obtain formula (4.8) for the probabilities wsol, wliq that the
cluster will be found in the solid and liquid states, respectively
[165]:

wsol � 1

1� p
; wliq � p

1� p
: �4:19�

From the thermodynamic relation, we find

p � exp

�
ÿ DE
Tcon

� Sliq�Tliq� ÿ Ssol�Tsol�
�

� exp

�
ÿ DE
Tcon

� DS
�
; �4:20�

where Ssol�Tsol� and Sliq�Tliq� are the entropies of the solid
and liquid states, respectively, at the corresponding tempera-
tures. We assume thermodynamic equilibrium in each
aggregate state for an isolated cluster, if the temperature Tsol

of the solid aggregate state and the temperature Tliq of the
liquid state are different; Tcon is an effective configurational
temperature (see Fig. 12) that characterizes the rate of
transitions between the solid and liquid states, and DE and
DS are the indicated changes of thermodynamic parameters
at the phase transition.

Although clusters exhibit bands of phase coexistence
rather than the sharp transitions at melting points of bulk
systems, we can, as mentioned above, define themelting point
of a cluster by analogy with that of the bulk system as the
temperature of equal free energies for the two phases. In this
way, the melting point Tm is defined as

p�Tm� � 1 ; �4:21�

and hence wsol � wliq � 1=2 at this configurational tempera-
ture within the framework of the approach of two aggregate
states. The effective cluster temperature of configurational
excitation at thermodynamic equilibrium in each aggregate
state tends to Tsol if p! 0 �wsol � 1� for an isolated cluster,
and tends to Tliq in the limit p!1, or when wliq � 1 in
accordance with Fig. 12. (It is sometimes useful to use the
distribution measure D � �wliq ÿ wsol�=�wliq � wsol� simply
because it varies only between ÿ1 and �1 [10, 171, 172].)

Note that the caloric curves give the energy of the phase
transitions DE as the energy difference between these curves
at the melting point. But this leads to an additional error in
comparison with the results of computer simulation at
constant energy. Indeed, for the Lennard-Jones cluster with
13 atoms we have DE � 2:5D. In the case of isothermal
computer simulation, we find for the energy difference

DE 0 � DE� Kliq�Tm�
Zliq�Tm� ÿ

Ksol�Tm�
Zsol�Tm� � 3:7D ; �4:22�

so that strong anharmonicity of the liquid state increases the
energy difference at the melting point by almost 50%. Thus,
simplistic inference of parameters directly from isothermal
computer simulation would lead to an additional error.

4.3 Voids in liquid clusters
In contrast to configurational excitation of a cluster consist-
ing of 13 atoms, for which the liquid state corresponds to
excitation of one void,many voids partake in the excitation of
the liquid state for larger clusters. Therefore, the aggregate
state of such a system may be a mixture of excitations of
several voids. We base our treatment of configurational
excitation on the results of computer simulations and assume
the existence of two aggregate states [33, 76, 165]. In doing so,
we use the dynamic coexistence of phases in clusters [8, 168 ±
170] within a certain temperature range, i.e., part of the time
the cluster is in one aggregate state, and the rest of the time in
the other state. (Strictly speaking, clusters may exhibit more
than two aggregate states at thermodynamic equilibrium; we
consider such cases below.) In addition, while the cluster is
residing in either aggregate state, vibrational equilibrium is
established [21], so that the vibrational temperature for each
aggregate state coincides with the thermostat temperature, if
the cluster is in a canonical ensemble [4]. In this case, the
probabilitywliq that the cluster will be found in the liquid state
is given by formula (4.8) [33, 165, 76]

Let us consider now configurational excitation for the
Lennard-Jones cluster consisting of 55 atoms, �LJ�55. Note
that in contrast to a cluster with 13 atoms, the energy

Table 10. Parameters of melting for atomic clusters and bulk systems.
�LJ�n is a cluster consisting of n atoms with the Lennard-Jones interaction
potential; D is the depth of the potential well.

Parameter (LJ)13 (LJ)55 Bulk inert gases

Tm=D
DE=D
DS0

DSm

DS0=DSm, %

0.29
2.5
5.2
8.6
60

0.31
16� 1

31� 2

48� 4

65� 10

0.58
0.98n
0.73n
1.68n
44
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differences between excitations associated with promotion of
different numbers of atoms for this and larger clusters need
not be large, and such configurational excitations may
include the formation of several or many voids. Next, large
clusters can have several aggregate states; Fig. 13 exhibits
such a possibility for �LJ�55. One can see three aggregate
states of this closed-shell icosahedral cluster composed of an
external shell of 42 atoms, an internal shell of 12 atoms, and a
central atom. In the lowest-energy aggregate state, both shells
are solid; in the second aggregate state, the outermost shell is,
in some sense, liquid and the inner shell is solid, while both
atomic shells are liquid in the third aggregate state.

In analyzing the parameters of this cluster on the basis of
numerical simulations, we first find the excitation energy of a
surface atom by treating it as an atomic transition from the
outer shell to the cluster surface and supposing that the
excited atom is found far from a newly created vacancy. In
this way, we neglect interactions between an excited atom and
its vacancy. Then the excitation energy equals [76]
De � e56 ÿ e55, where e55 and e56 are the total binding
energies of atoms for clusters consisting of 55 and 56 atoms,
respectively According to calculations [88] for the ground
state energies of these clusters, we have De � 2:64D at zero
temperature. Direct calculations for lower excitations of this
cluster [177] lead to a minimal excitation energy of 2:63D.
Therefore, an excited atom on the cluster surface can be
treated as being far from the newly created vacancy.
According to computer simulations [172, 178, 187], we have
the following parameters of the �LJ�55 cluster: DE � 14ÿ17,
Tm � 0:30D, and Cmax

res � 600ÿ700. This gives

DSm � DE
Tm
� 52� 5 ; �4:23�

and the mean number of atoms that leave the body of the
cluster to form voids is estimated as

v5
DE
De
� 5 �4:24�

for this system.
To analyze the Lennard-Jones cluster consisting of

55 atoms, whose global minimum structure is a closed

icosahedron, we express the energy DE of configurational
excitation in terms of the energy De of the excitation of an
individual void as DE � vDe, where v is the number of new
voids. The data from computer simulations [172, 178] give us
the entropy jump DS0 at zero temperature separately for each
number of new voids if, according to the above formula, we
take v � 5ÿ7. We assume that atoms can transfer not only
from the icosahedron's vertices, but also from the edges; we
ignore the difference in the energy changes when an atom goes
from a vertex or from an edge to the cluster surface, and we
assume that transferring atoms are not adjacent to the
vacancies they leave. A new vacancy on a cluster edge or
surface has 6 neighboring atoms, and a vertex vacancy has
only 5. Thus, we find that v� �5ÿ6� positions on the cluster
surface are lost for atoms transferred from any of 80 positions
on the cluster surface, if v transferring atoms on the cluster
surface do not border vacancies in the cluster shell. From this
we find the entropy jump for this configurational excitation of
the cluster at zero temperature, which results from v atoms
moving from the outermost cluster shell of 42 atoms. Atoms
promoted to rest outside the outer shell aremuchmoremobile
than any other atoms and are therefore called `floaters' [171,
172, 178]. The result for the entropy abrupt change in the
course of configurational excitation takes the form

DS0 � ln C v
mC

v
42 ;

where

m � 80ÿ v� �5ÿ6�

is the number of positions for floaters on the cluster surface,
when floaters do not border new vacancies. From this we have
DS0 � 28:2ÿ28:7 for v � 5, DS0 � 31:2ÿ32:0 for v � 6, and
DS0 � 31:6ÿ33:0 for v � 7. This gives the average value

DS0 � 31� 2 ; �4:25�

and from formula (4.16) we obtain the entropy jump at the
melting point:

DSm � 45� 2 : �4:26�

From formulas (4.23) and (4.26) for the entropy jump at the
melting point, we find its average valueDSm � 48� 4 given in
Table 10. From this table follows that the contribution of
thermal motion to the entropy jump at the melting point is
almost identical for the Lennard-Jones clusters with 13 and
55 atoms. Thus, the above analysis shows that the entropy
jumps at zero temperature and at the melting point are
different; this fact is demonstrated in Table 10.

Considering a void as a relaxed vacancy, the isolated
vacancy and void become equivalent at zero temperature if we
neglect the vacancy ± atom interaction. Real parameters of
voids take into account this interaction and hence the
influence of the thermal motion of atoms on configurational
excitation. The lower the temperature, of course, the less the
configurational excitation and the less the vibrational excita-
tion as well. Evidently, the separation of the configurational
excitation from thermal vibrations of atoms that we have used
is valid only in the range from low to moderate temperatures,
and is better for clusters with closed outer shells than for
others. Therefore, we use the void concept especially for
clusters with closed shells, such as those consisting of 7, 13,
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Figure 13. The caloric curve of the Lennard-Jones argon cluster consisting

of 55 atoms [171, 172]: 1Ðsolid cluster, 2Ðsolid internal shell and liquid

outer shell, and 3Ð liquid cluster.
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19, 55, and 147 atoms. In these cases, there is a solid ± liquid
coexistence region of temperatures and pressures within
which the probability distribution of total kinetic energy is
distinctly bimodal [8, 179] for an isolated cluster (see Fig. 10).
The occurrence and persistence of these two aggregate states
substantiate our approach of two aggregate states [165],
which is an analogue of the solid and liquid aggregate states
for bulk systems.

In reality, one can observe several types of configurational
excitations which correspond to the excitation of different
cluster shells [178, 172, 171]. For clusters of about 50 or more
atoms, the distribution may be trimodal over a narrow range,
as it is for the 55-atom Lennard-Jones cluster. The inter-
mediate aggregate state appears as a minority, and is
generally called a `surface-melted' state. However this is, in a
sense, a misnomer because the atoms in the surface layer,
while undergoing large-amplitude, anharmonic motion,
move, according to simulations, in a very coherent manner
around an average polyhedral structure. This state exhibits a
liquid-like diffusion coefficient for its outer layer, but this is
attributable to the `floaters' which change places with surface
atoms every few thousand vibrational periods [178].

Next, for some clusters with unfilled outer shells, thermo-
dynamically stable states of configurational excitationmay be
absent, in particular, for Lennard-Jones clusters consisting of
8 and 14 atoms [179], because only a small entropy jump
separates the states of these systems; this is much the same
situation as occurs with excited states of atoms with open
shells. Therefore, the real behavior of excitations in clusters
with pair interactions between atoms may be more compli-
cated than that within the framework of the void model of a
cluster with two aggregate states. Nevertheless, this model is
useful for understanding and describing clusters with a
pairwise atomic interaction.

Thus, this analysis allows us to determine the average void
parameters for clusters consisting of 13 and 55 atoms with
closed atomic shells. It follows from this analysis that,
although the configurational and thermal excitations are
separated, thermal motion of atoms makes a contribution to
the entropy jump in the transition between the solid and
liquid aggregate states of clusters.

4.4 Voids in liquid inert gases
The phase transition in clusters is more complex than in bulk
systems, and caloric curves representing the temperature
dependences of the clusters' internal energies allow one to
extract several types of phase transitions related to the
melting of different cluster shells. (For example, see the
caloric curves in Fig. 13 for the Lennard-Jones cluster
consisting of 55 atoms.) As the number of cluster atoms
increases, and the cluster is transformed into a bulk system,
two types of phase transitions remain: the first relates to
internal atoms, and the second includes surface atoms, as
described above. In considering the melting of bulk systems,
we concentrate on the phase transition involving internal
atoms, when configurationally excited states of this system
result from the formation of internal voids [25]. Here, we use
this concept and determine the parameters of these voids.

Let us study the nature of elementary configurational
excitations in bulk systems of bound atoms with pairwise
atomic interactions in more detail. We consider this system as
a very large cluster whose surface contains a relatively small
number of atoms, small enough that we can ignore the surface
phenomena in this system. The global minimum of the

potential energy surface for this cluster is typically a strict
crystal lattice of atoms. In this sense, we consider systems
large enough that their states of lowest energy are not
polyhedral. The lowest configurational excitations in this
system correspond to the formation of vacancies in which
some atoms move to the cluster surface, and holes are formed
inside the cluster. One can see that any configurational cluster
excitation leads to an increase in its volume. When config-
urational excitation becomes extensive enough that neighbor-
ing vacancies can border on one another, the lattice cluster
structure is lost. Elementary configurational excitations can
then be represented as voids [25]. The shape and size of an
elementary void vary in time, in contrast to an elementary
vacancy in a lattice, so that one can use only average void
parameters. Thus, considering a void as a developed vacancy
and using real parameters of condensed inert gases, one can
find the parameters of an average void [32, 34, 35].

Guided by condensed inert gases, we use the connection
between the pair interaction potential of nearest atoms and
the total energy of a condensed system of bound atoms (see
Section 2.5). From this it follows, in particular, that the
reduced pressure near the triple point is [33, 94]
�1:9� 0:2� � 10ÿ3, and we ignore any pressure effects here.
Hence, one can characterize excitation of this system by its
entropy, and the cluster-free function depends on only one
parameter. Figure 14 gives the dependence of the logarithm of
the partition function for a configurationally excited cluster
on the number of internal voids v, when this bulk cluster
contains n bound atoms.

Thus, treating the configurational excitation of a bulk
atomic system with pair interaction as the result of the
formation of internal voids, we define the effective number
of those voids as the consequence of relaxation of a specific
number of initially formed vacancies in a solid from which
this configurationally excited state arises [32 ± 35]. The
number of voids characterizes the degree of configurational
excitation of this system which need not be in equilibrium
with the thermal motion of the atoms. In order to prepare a
system of bound atoms consisting of n atoms and v voids, we
take a bulk solid cluster of n� v atoms and remove v atoms to
an unspecified place outside the cluster. This system is
assumed to be large enough that almost all the removed
atoms come from the inside of the system, and surface effects
are negligible. Hence, this system contains n atoms and v
internal voids after relaxation and, according to the defini-
tion, an individual void results from the relaxation of an

lnZ

vsol vmin vliq v
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Figure 14. Logarithm of the atomic partition function for a macroscopic

ensemble of bound atoms with a pair interaction as a function of the void

concentration [32].
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individual vacancy and its immediate environment. Because
the number of voids can have any value, this system is not at
thermodynamic equilibrium and will tend to equilibrium as a
result of the diffusion of voids. Therefore, we consider this
system during time intervals that are short in comparisonwith
diffusion times of voids through the system. But still, during
such intervals, thermodynamic equilibrium is established for
the thermal vibrations of the atoms. Although the volume and
shape of an individual void vary in time, here we use average
parameters of individual voids, which depend only on the
void concentration at a given temperature of atomic oscilla-
tions. We find the parameters of an individual void in the
liquid state near the triple point on the basis of parameters of
real inert gases. Additional information also follows from the
fact of the existence of one thermodynamically stable
configuration state of this system, which is the liquid state.
Then, the cluster partition function must have the form
depicted in Fig. 14.

Thus, considering configurational excitation of a macro-
scopic system of bound atoms with a pair interaction between
atoms as a result of void formation, and neglecting surface
effects for a bulk system, we will find the parameters of
configurationalal excitation for the liquid state on the basis of
real parameters of inert gases. We assume the total excitation
to be expressible in terms of a sum of identical internal voids,
i.e., elementary configurational excitations. An individual
void is characterized by the statistical weight gv and the
average energy ev of its formation from the solid state. We
establish the operations [33 ± 36] for determining these
parameters for condensed inert gases, a bulk system of
bound atoms with interaction between nearest neighbors
only, in a simplified form. The partition function of an
excited bulk system consisting of n bound atoms includes a
gas of v identical voids, so that we have for the partition
function of this system:

Zv � C v
n�v g

v
v exp

�
ÿ v ev

T

�
: �4:27�

In the bulk limit n4 1, v4 1, we obtain

lnZv � n ln

�
1� v

n

�
� v ln

�
1� n

v

�
� v ln gv ÿ v ev

T

� v
�
DSv ÿ ev

T

�
; �4:28a�

where

DSv� 1

x
ln �1� x�� ln

�
1� 1

x

�
� ln gv ; x � v

n
: �4:28b�

It is convenient to reduce this expression to

DSv � 1� ln
gv
x
; �4:29�

and this change leads to an uncertainty below 7% if x4 1=3,
which includes the entire transition range between solid and
liquid states. We then derive the expression for the chemical
potential of the atomic system:

m�x� � 1

n
lnZv � x

�
1� ln

gv
x
ÿ ev

T

�
: �4:30�

This simplification allows us to avail ourselves of the
assumptions made above.

From this we get the partition function for the solid
(crystalline) state (v5 n, gv � 1, ev � esol):

lnZv � v
�
1� ln

n

v
ÿ esol

T

�
; �4:31a�

and the minimum condition gives the number of voids
(vacancies) in the solid state:

vsol
n
� exp

�
ÿ esol

T

�
; �4:31b�

so that this concentration of voids is equal to
�1:9� 0:2� � 10ÿ5 for inert gases near the triple point [33 ±
35]. Below, we neglect the existence of vacancies for the solid
state.

In the case of configurationally excited states, the above
expression for the partition function of a void gas becomes
analogous to the general expression (4.31a):

lnZv � v
�
DSv ÿ ev

T

�
;

where DSv is the entropy of an individual void. When
considering the liquid state, we use the relation

vev � nDHfus ; �4:32�

where DHfus is the enthalpy of the phase transition, and the
values of the binding energy per individual void are listed in
Table 11. Since the dependence on the number of voids for the
function lnZv=v has a specific form (see Fig. 14) with two
maxima (solid and liquid), this offers additional information
for determining void parameters in the liquid.

The energy of void formation may be written in the form

ev � e0 ÿU

�
v

n

�
;

U�x�
e0
� exp

�
ÿ a
x

�
ÿ exp

�
ÿ ka

x

�
;

�4:33�

where a and k are the parameters. Table 11 lists values of some
void parameters for the formation of one void in the liquid
state from an initial solid state. We take as e0 the crystal
sublimation energy per atom esub near the triple point or the
exponent esol in the Clapeyron ±Clausius law. In the latter
case, the results of Table 11 are given in parentheses.

The equation at the melting point with lnZv � 0 or
m�xliq� � 0, where xliq refers to the liquid state, has the form

1� ln
g�vliq�
xliq

ÿ DHfus

Tmxliq
� 0 ; xliq � vliq

n
;

and the solution to this equation exists for

g�vliq� > gmin � exp

�
DHfus

Tm
ÿ 1

�
: �4:34a�

Next, from this equation and the definition of the fusion
energy DHfus � e�vliq� xliq it follows that

g�vliq� � DHfus

eliq
exp

�
eliq
Tm
ÿ 1

�
;

where eliq � e�vliq� is the energy of void formation for the
liquid state at the melting point. Because g is a monotonic
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function of vliq, and eliq < e0, we obtain

g�vliq� < gmax � DHfus

e0
exp

�
e0
Tm
ÿ 1

�
: �4:34b�

Table 11 contains the values of gmin and gmax. It is important
that the liquid state, i.e., a configurationally excited and
thermodynamically stable state of a bulk system, exists only
if the void statistical weight yields a minimum of the free
energy in a certain range. In particular, if the only value of the
statistical weight of a void that minimizes the free energy is
that of an isolated vacancy in the crystal lattice, g � 1, then
the liquid state of such a system is simply not stable. Likewise,
the void density yielding a free energy minimum may be so
high that the state to which it corresponds is a vapor. Only if
the conditions are established under which there is a stable
void density between these limits, can the liquid exist as a
stable state. Because the void statistical weight increases with
increasing vibrational temperature, atomic thermal motion is
important for the existence of the liquid, and this aggregate
state is not realized at low temperatures. (Helium is, of course,
the exception.)

Note that at the melting point we have simultaneously

m�xliq� � m0�xliq� � 0 : �4:35�

Taking

gv � 1� a
v

n
; �4:36�

we obtain from equation (4.35) at the melting point:

dU�xliq�
dx

� 0 ; �4:37a�
or

a
xliq
� ln k

kÿ 1
; �4:37b�

and we assume g�vliq�4 1. Note that, just from its physical
nature, the functionU�v=n� is monotonic, and from equation
(4.37a) it follows that the model under consideration is valid
only for v9 vliq. We obtain one more equation by assuming

that a minimum of the function lnZv (see Fig. 14) appears at
the void concentration at which a test void finds a nearest-
neighbor void. This gives xmin � 1=12. Now, neglecting the
second term in expression (4.33) for U�x�, and assuming
g�xmin�4 1, or a4 12, we obtain from the first equation
(4.35) the equality m0�xmin� � 0 yielding

�1� 12a� exp�ÿ12a� � 1ÿ �1� ln a�Tm

e0
:

The corresponding values for inert gases are listed in Table 11.
Of course, these values are close to those found previously
[33 ± 36], and the differences between them are due to the
simplified scheme used now. In spite of its crudeness, the
model allows us to determine the void parameters on the basis
of the physical nature of the configurationally excited states.

We now analyze the results from another standpoint. Let
us represent the entropy of the solid ± liquid phase transition
in accordance with formulas (4.13) and (4.14) as the sum of
two parts:

DS � DS0 � DSth ; �4:38a�

so that the first, configurational term accounts for the
formation of internal voids, and the second term for the
thermal motion of atoms. The first term is equal to

DS0 � n ln

�
1� v

n

�
� v ln

�
1� n

v

�
; �4:38b�

and DS0=n � 0:73 for the above values of void parameters
relating to condensed rare gases. Because the total entropy
jump for the phase transition of rare gases is DS=n � 1:68, we
obtain for the contribution caused by phonons:

DSth � 0:95 :

The nature of this term is due to oscillations of atoms; it
contributes 56% of the total entropy. As a result of the phase
transition, the specific volume per atom increases, which
increases the amplitude of each atom's vibrational motion.
This leads to an entropy increase due to atomic motion.
Expressed in terms of a harmonic oscillator model, this effect

Table 11. Reduced parameters of voids for bulk liquid rare gases [33 ± 36].

Parameter Ne Ar Kr Xe Average

Tm=D
e0=D
DHfus=D
gmin

gmax

n=vliq
e�vliq�=D
DS�vliq�
g�vliq�
a

g�vmin�
Uliq=D
Uliq=e0
DS�vmin�
1ÿ TmDS�vmin�=e0
a
an=vliq
k

0.581
6.1
0.955
1.9
1900
3.12
3.00
5.16
55
171
15
3.1
0.51
6.19
0.41
0.165
0.51
3.26

0.587
6.5
0.900
2.0
3700
3.13
3.09
5.26
62
189
17
3.4
0.52
6.32
0.43
0.159
0.50
3.38

0.578
6.7
0.980
2.0
4300
3.14
3.05
5.28
63
193
17
3.6
0.54
6.32
0.44
0.151
0.48
3.56

0.570
6.7
0.977
2.0
4100
3.13
3.05
5.35
68
207
18
3.6
0.54
6.38
0.44
0.151
0.48
3.58

0.579� 0.007
6.5� 0.3
0.976� 0.017
2.0
3500� 1000
3.13� 0.01
3.05� 0.04
5.26� 0.08
62� 5
190� 15
17� 1
3.4� 0.2
0.52� 0.01
6.3� 0.1
0.44� 0.02
0.158� 0.005
0.49� 0.02
3.44� 0.15
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leads to a decrease in the Debye temperature of the system.
Let us assume for simplicity that themelting point exceeds the
Debye temperature yD, so that we use the limiting expression
for the entropy of a bulk system of n bound atoms [6]:

Sosc � 3n ln
T

yD
� 4n :

In this limit, taking DSth � Socs, we find that the melting
transition increases the Debye temperature by about 40%.
Comparing the contribution from thermal oscillations to the
total entropy of Lennard-Jones clusters and bulk inert gases
at their melting points, one can readily see that the vibrational
contribution grows as the temperature drops. Indeed, if the
reduced melting point Tm=D increases from 0.3 for the
Lennard-Jones cluster consisting of 13 atoms to 0.58 for
bulk rare gases, the contribution of atomic oscillations at
the phase transition to the total entropy jump varies from
36% up to 56%. These values were included in Table 10.

4.5 Definition of the aggregate state
and melting criteria
One can see the difference between the definition of the cluster
liquid aggregate state we use here and that in classical
thermodynamics in which the phase or aggregate state of
bulk corresponds to a uniform, long-time average distribu-
tion of atoms in some bounded spatial domain. This means
that the phase or aggregate state in classical thermodynamics
includes many elementary configurational excitations, while
in the case of a 13-atom cluster this state can result from one
elementary configurational excitation. Of course, it is
necessary to apply additional criteria to the liquid cluster
state (or an excited aggregate state) for two-body correlations
that are different for the solid and liquid states (see, for
example, Refs [7 ± 9]).

From this it follows that the cluster aggregate states have
additional peculiarities differentiating them from bulk sys-
tems. One of the most important of these is dynamical
coexistence of phases [7 ± 9, 167]. This coexistence is partly a
consequence of the time scales for phenomena at the
nanoscale. In contrast to the time scales for bulk matter,
those of clusters and nano-sized materials allow us to make
observations that can be slow enough to obtain time averages
over different phases or, if the observation times are some-
what shorter, as with dozens of nanoseconds or less, to
distinguish clusters in specific, recognizable phases. Many,
but not all, kinds of clusters exhibit a dynamic equilibrium
like that of chemical isomers in a certain range of parameters
near themelting point; each cluster is found part of the time in
the solid state, and the rest of the time in the liquid state Ð in
cases in which there are two distinguishable aggregate states.
This situation means that the distinction between `phase' and
`component' is blurred for clusters, and the Gibbs phase rule
loses its applicability. Thus, we must be cautious in how we
use classical thermodynamics when dealing with clusters, and
in particular, we must be especially aware of hidden
assumptions that are entirely valid on the bulk scale but not
on the nanoscale. To understand the phase behavior of
clusters and relate that to the phase transitions in bulk
matter, we must slightly change the definition of aggregate
states from the classical thermodynamic definition of states of
macroscopic systems. Within the framework of this descrip-
tion, we consider the cluster aggregate state as a group of
configurationally excited cluster states with similar excitation
energies.

Thus, the nature of the solid ± liquid phase transition in
clusters with pairwise interaction between atoms is predomi-
nantly a result of configurational excitation. In practice, it is
convenient to use the Lindemann criterion [26] as a diagnostic
tool for this phase transition. According to this rule, the phase
transition occurs at the temperature at which the relative
amplitude of atomic oscillations reaches a characteristic
value; specifically, melting is said to occur when the ratio of
the root-mean-square amplitude of atomic oscillations to the
distance between nearest neighbors is 0.10 ± 0.15. Typically,
in the range of this temperature, the ratio of distances
increases sharply. With the development of numerical
methods to simulate cluster dynamics, more precise criteria
for the phase transition were introduced, which are based on
pair correlations of positions of the cluster atoms. In
particular, this correlation function can use the Etters ±
Kaelberer parameter [28 ± 30] or the Berry parameter [9, 31].
These parameters are proportional to the fluctuations of the
interatomic distance. These fluctuations give a somewhat
more precise insight into how the solid and liquid states
differ, and how the transition between them occurs over the
range of their coexistence.

One can see in all the above discussions a paradox or
apparent contradiction between the nature of the `cause' of
the phase transition and the parameters typically used to
characterize this phenomenon. While the essence of the
melting, i.e., the onset of fluidity in a dense medium, consists
in configurational excitation and the introduction of voids in
the system, the parameters for its description, such as the
Lindemann criterion, are based on the atomic thermal
motion. The former is the cause, and the latter is the effect.

The void concept for the configurational excitation of
such systems, interpreted with the help of computer simula-
tions and thermodynamic parameters of condensed inert
gases, shows that the origin of this apparent paradox lies
with the changes in thermal vibrations of atoms in themelting
process and their consequent striking contribution to the
entropy's abrupt change at the melting transition. Indeed,
because of the lower density of atoms in the liquid state, the
atomic thermal motion contributes to the entropy of the
configurational transition in accordance with formula (4.13).
As a result, the entropy jumps DS0 and DSm at zero
temperature and at the melting point are quite different, as
follows from the data in Table 10. This allows us to
characterize the phase transition also by the value of the
difference DSm ÿ DS0 that is determined by the thermal
motion of atoms. Thus, although the ideas of the Lindemann
criterion and other melting criteria are not rooted in the cause
of the transition, the criteria reflect correctly the conse-
quences of this phenomenon.

We now formulate the steps we need to transfer the
description of configurational excitation of clusters to the
phase transitions in classical thermodynamics. In considering
clusters with pairwise atomic interactions, we start from the
potential energy surface (PES) in a many-dimensional space
of atomic coordinates, in which cluster evolution is described
as motion on this PES. A special characteristic of such a PES
is the immensely large number of local minima. In the course
of its evolution, a cluster dwells for some time interval near
each PESminimum it visits, so that it has many oscillations in
the phase space near each minimum until it moves on to a
neighboring minimum. In this manner, we separate thermal
motion of atomic oscillations from configurational excitation
identified with each PES minimum. In the next step of the
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analysis, in order to simplify the problem, we introduce an
elementary configuration excitation, a void, and here we
assume all single configurational excitations to be equiva-
lent. One can see that this assumption is valid more or less, if
we consider a void as a result of relaxation of an initially
formed vacancy.

Then, basing our next step on the shell cluster model, we
introduce groups of individual vacancies or groups of voids.
Again, all states with the same number of voids fall into a class
whose members we consider indistinguishable. Of course,
interaction between voids (or interaction between atoms for a
configurationally excited ensemble) violates this picture, and
hence the isolated-void description of configurational excita-
tion is an oversimplified model. In transition to bulk systems,
if we restrict our discussion to internal voids, these voids all
correspond to the same kind of configurational excitation,
i.e., we deal with identical voids. In the next step of the
transition to classical bulk thermodynamics, we form the
liquid aggregate state of a bulk ensemble of bound atoms by
excitation of a sufficient number of voids in the solid
aggregate state. This state includes enough elementary
configurational excitations, voids, to permit diffusive
motion of the atoms, and therefore it is sufficient for the
classical definition of the liquid phase that we can describe as
a uniform distribution of atoms. In addition, we take as the
liquid state the thermodynamically most favorable state that
contains the optimal number of voids. This means the state
with the lowest free energywith respect to the number of voids
or the maximum of the partition function, as follows from
Fig. 14. In this way, moving from the mechanical description
of a bulk ensemble of bound atoms, one can transfer to its
thermodynamic description at the nanoscale by incorporat-
ing some additional assumptions and avoiding some thatmay
be tacit in the classical framework.

Thus, to go to classical thermodynamics, one can see that
additional assumptions are required for this passage. Simul-
taneously, it leads to simplifications and gives a universal
description of the phase transition within the framework of
classical thermodynamics on the basis of some thermodyna-
mical parameters. Returning back to a cluster, one can see
that thermodynamic parameters can be used even when
classical macroscopic thermodynamics is not applicable for
clusters in principle. Indeed, employing the entropyS, the
internal cluster energy E, the cluster free energy F, and other
thermodynamic parameters is useful for configurationally
excited clusters, although it requires additional analysis of
the validity of some thermodynamic relations. Following this
path to classical thermodynamics, we use the two-state
approach to cluster aggregate states; it is also beneficial for
describing clusters.

4.6 Voids as elementary configurational excitations
of a macroscopic atomic system
According to definition, voids are elementary configurational
excitations; we will now ascertain the strictness of this
definition. A void is introduced as a perturbed or relaxed
vacancy of a crystal lattice. Indeed, starting from a macro-
scopic crystal particle containing n� v atoms, we remove
from it v atoms and obtain a macroscopic cluster containing n
atoms and v vacancies. Assuming the fraction of surface
atoms in this cluster is relatively small, we suppose that
practically all the vacancies are located inside. If neighboring
vacancies border on this area, their interaction leads to
compression of the cluster, and then vacancies convert into

voids. Of course, in contrast to vacancies, parameters of a
void vary in time, so we deal with time-averaged parameters
of voids. We assume the number of vacancies in the initial
distribution is equal to the number of voids after relaxation,
and therefore, in accordance with the character of relaxation,
the average void parameters, such as the energy and entropy
of their formation, the average void volume, etc., differ from
the parameters for vacancies.

Let us consider this problem from another standpoint.
The basic property of a system of atoms with a pairwise
interaction is separation of its ground electronic state from
the first electronically excited state by a wide energy gap, and
therefore we deal with the ground electronic state only. The
total electronic energy and the electron ± nuclear and
nuclear ± nuclear potential energy contributions to the total
energy of the ground state determine the effective potential
energy surface in the space of atomic coordinates. This is, of
course, the Born ±Oppenheimer approximation. Conse-
quently, the evolution of this macroscopic system of atoms
may be represented as a motion along the potential energy
surface in a many-dimensional space of atomic coordinates.
A characteristic property of virtually any potential energy
surface for a many-particle system is its large number of local
minima in this space [19]. The system of atoms spends almost
all its time in regions near the local minima of the potential
energy surface; only a small part of the time is consumed in
transitions between neighboring local minima. Local minima
of the potential energy surface characterize stable atomic
configurations; we associate these stable configurations with
configurational excitations from the ground configurational
state. Each configuration of atoms has a specific number of
voids.

Let us follow this connection.When the number of voids v
is very small compared with the number of atoms n, so that
neighboring voids do not border on one another, the
elementary configurational excitations are better described
as vacancies than as voids, and the volume per atom is equal
to the volume per void. Correspondingly, all permutations of
atoms and voids, when they form a crystal lattice, lead to
stable configurations of atoms with the same energy of
configurational excitation. In other words, any configura-
tion of atoms and voids corresponds to a certain local
minimum of the potential energy surface. Then the energy of
configurational excitation, as well as variations in the total
volume of the system relative to that of the ground state, is
proportional to the number of vacancies v. The same relates
to the entropy variation associated with configurational
excitation of the atomic system.

Relaxation of this atomic system in the case where the
number of voids is not small leads to some compression and
moves the atomic system to a stable configuration. Assuming
that each initially created distribution of vacancies in the
crystal lattice gives rise to its own configuration of atoms after
relaxation, we suppose that each initial distribution of atoms
and vacancies corresponds to a certain local minimum of the
potential energy surface to which it relaxes. There is likely to
be some short-range order in the atomic distribution because
each final state yields a stable configuration. Thus, consider-
ing a void as an elementary configurational excitation, we
infer that voids are independent, and each set of voids leads to
a certain stable distribution of atoms Ð a local minimum of
the potential energy surface. This was used above in the
course of determining void parameters for a liquid aggregate
state of inert gases.
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5. Thermodynamics of clusters near
the phase transition

5.1 The hierarchy of times for atomic relaxation
in clusters
We now analyze the character of equilibrium in a cluster,
basing our discussion on the two-state approach to cluster
aggregate states [165]. This extends the thermodynamic
concept of the aggregate states from bulk to clusters. We
assume the existence of local stability and thermal equilibra-
tion for two aggregate states, solid and liquid. Although
clusters may exhibit several aggregate states in equilibrium,
for example, associated with the melting of different cluster
shells [171, 172], the model we use here supposes that in a
given range of parameters the cluster can be found only in two
aggregate states. The character of cluster equilibrium is
determined by typical times for processes proceeding within
the cluster. A typical time teq to establish thermal equilibrium
between bound atoms is equal (on the order of magnitude) to

teq � 1

oD
; �5:1�

where oD is the Debye frequency, roughly inversely propor-
tional to a period of cluster atomic oscillations (� 10ÿ14 s at
room temperature). The typical dwell time of a cluster in the
vicinity of the free energy minimum, tag, associated with each
aggregate state has long been compared with teq:

teq 5 tag ; �5:2�

because transitions between aggregate states require the
cluster to overcome a significant free energy barrier. We
consider a cluster of bound atoms as a member of a
microcanonical ensemble, if one can neglect the interaction
between the cluster and environment, that is

tag 5 tth ; �5:3�

where tth is the typical time for the exchange of energy
between the cluster and its environment; for shorter times,
the cluster can be considered an isolated particle. Let us
introduce a typical time of cluster observation t, so that in the
case of an isolated cluster, when it is a microcanonical
ensemble of atoms, we have

tag 5 t5 tth : �5:4�

This hierarchy of cluster times leads to a particular pattern
of cluster behavior. Indeed, during teq thermal equilibrium is
established for the vibrational motion of the cluster atoms, so
that the thermal motion of atoms can be characterized by the
temperature [21]. Because of criterion (5.2), and because the
two states have the same energy but occur at different levels
on the potential energy surface, this temperature is different
for the two aggregate states of an isolated cluster. Hence, we
introduce different temperatures of atoms for the solid (Tsol)
and liquid (Tliq) aggregate states. In particular, in the
Dulong ±Petit limit, assuming thermal motion of atoms to
be a combination of harmonic vibrations (the parameter Z in
formula (4.5) is Z � 1=2 ), for the cluster energy according to
formula (4.4) we obtain

E � �3nÿ 6�Tsol � DE� �3nÿ 6�Tliq ; �5:5�

where n is the number of cluster atoms, and DE is the fusion
energy, so, from this, we have for an isolated cluster:

DT � Tsol ÿ Tliq � DE
3nÿ 6

: �5:6�
Along with these temperatures, one can introduce a general
cluster temperature T for a long time � t that can be
expressed in terms of the average energy of an individual
cluster atom if an average is taken for a time� t long enough
for the cluster to change its aggregate state many times. We
return below to the question of the meaning of temperature in
noncanonical ensembles.

5.2 Entropy of an isolated cluster
near the phase transition
Let us consider a microcanonical ensemble of large isolated
clusters, with pairwise interaction between atoms, from the
standpoint of thermodynamics and elucidate the conditions
of validity of thermodynamics for its description. At issue is
the question of what commonly held, implicit assumptions
may be inapplicable to such systems, even though the basic
principles of thermodynamics remain perfectly applicable.
We continue to separate configurational and vibrational
degrees of freedom. Moreover, we again use the two-state
approach for cluster aggregate states, in which configuration-
ally excited states belong either to the solid aggregate state or
to the liquid aggregate state. In this way, we divide cluster
configurational states into solid and liquid categories and
ignore other configurational states, assuming that the prob-
ability of their realization is small. (We could choose
situations, sometimes only in narrow ranges of temperature
or pressure, in which this would be violated.) Under these
conditions, one can determine some cluster parameters and
compare them with the observed values when an isolated
cluster can be characterized by two temperatures, Tsol and
Tliq, depending on the aggregate cluster state.

We start by determining the cluster's entropy under the
above conditions using a general expression for the entropy
(see, for example, Ref. [6])

S � ÿhlnPi � ÿ
X
i

Pi lnPi ; �5:7�

where i is a cluster state, and Pi is the probability that the
cluster is found in this state (with, of course, normalizing
condition

P
i Pi � 1). Because the configurational and vibra-

tional degrees of freedom are separated, we have

Pj � wsol Xj ; Pk � wliqYk ; �5:8�

where the probabilities of the solid and liquid states wsol and
wliq are given by formulas (4.8) and (4.19), respectively, Xj is
the probability of the j-th vibrational state for the solid
aggregate state, and Yk is the probability of the k-th
vibrational state if a cluster is in the liquid aggregate state.
The normalization conditions for the probabilities give

wsol � wliq � 1 ;
X
j

Xj �
X
k

Yk � 1 : �5:9�

Substituting formulas (5.8) into Eqn (5.7), we find the entropy
of a cluster with two aggregate states [175]:

S � ÿwsol

X
j

Xj ln�wsolXj� ÿ wliq

X
k

Yk ln�wliqYk�

� wsolSsol � wliqSliq � Sph ; �5:10�
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where

Ssol � ÿ
X
j

Xj lnXj ; Sliq � ÿ
X
k

Yk lnYk �5:11a �

are the entropies of the corresponding aggregate states, and
the entropy due to configurational excitation is defined as

Sph � ÿ
X
i

xi lnxi � ÿwsol lnwsol ÿ wliq lnwliq

� ln �1� p� ÿ p

1� p
ln p : �5:11b�

Here, xi is the probability of the cluster being in a given
aggregate state, and we use formulas (4.19) for this quantity.
Note that this expression is valid under the assumption that
the cluster is observed in long-term equilibrium, i.e., during a
time of observation it can be located many times in each
aggregate state. Thus, expressions (5.11) for the cluster
entropy are a sum of terms corresponding to the solid and
liquid aggregate states, as well as of the term that accounts for
configurational excitation.

One can divide the entropy variation into two parts:
dS � dSth � dScon, so that the first part is connected with
atomic vibrations, and the other one refers to the phase
transition. Then we obtain [175]

dSth � wsol dSsol � wliq dSliq ; �5:12a �
dScon � dSph � Ssol dwsol � Sliq dwliq

� ln
wsol

wliq
dwliq � DS dwliq : �5:12b�

Here, we included the constraint that wliq � wsol � 1 or
dwliq � dwsol � 0, and DS � Sliq ÿ Ssol is the entropy jump
resulting from the phase transition. One can see that the
variation dScon does not depend on the thermal motion of
atoms, while dSth is determined by these degrees of freedom.
Thus, the phase transition gives an additional contribution to
the total cluster entropy and its variation.

5.3 Temperature of an isolated cluster near
the phase transition
The internal cluster energy E is the sum of two parts for the
vibrational and configurational degrees of freedom:

E � Eth � Econ � Eth � DEwliq ; �5:13�

the second term based on the two-aggregate approach and the
assumption being that the energy DE of configurational
excitation is independent of the vibrational (and electronic)
excitation energy. When a cluster is a member of a micro-
canonical ensemble, i.e., it is isolated, all its parameters are
considered at E � const. We next find an effective `transla-
tional' cluster temperatureT that refers to thermalmotion (or
vibrations) of atoms and follows from the thermodynamic
relation

dEth � T dSth ; �5:14�

where dSth is given by formula (5.12a), determining the
appropriate contribution to the microcanonical entropy.

The hierarchy of times according to relations (5.2) and
(5.4) leads to the two-temperature thermal regime of an
isolated cluster, so that the temperature of atomic motion at

a given cluster energy E is either Tsol or Tliq, depending on its
aggregate cluster state. We can apply definition (5.14) to each
aggregate state separately, or to the long-time average over
both aggregate states. In the first case we have

1

Tsol
� dSsol

dEth
;

1

Tliq
� dSliq

dEth
; �5:15�

where both entropies are microcanonical. Let us find the
temperature for a long-time average on the basis of formula
(5.14). For simplification we make an additional assump-
tion: because within the range of the phase transition the
caloric curves are approximately parallel lines, we suppose
that the heat capacity in the absence of the phase transition
does not depend on the cluster energy E over the transition
range:

C0 � dEth

dTsol
� dEth

dTliq
; �5:16�

where C0 is the heat capacity far from the phase transition.
From this we obtain at each cluster energy:

Tsol � T� DT
2
; Tliq � Tÿ DT

2
�5:17a�

and

T � Tsol � Tliq

2
; DT � Tsol ÿ Tliq : �5:17b�

In addition, we assume for simplicity that

DT5T : �5:18�

The data in Table 12, based on computer simulations for
the Lennard-Jones cluster consisting of 13 atoms [8], show the
validity of criterion (5.18), and the small parameter DT = T
used above is equal to 0.2 for this cluster. This small
parameter determines the accuracy of using a single transla-
tional cluster temperature. Note that the heat capacity near
the melting point does not show a large increase for this
cluster, and the heat capacity is positive at all temperatures.
This contrasts with the report of a negative heat capacity for
larger clusters near the melting point [180, 181], based on
experiments with sodium clusters [173, 174, 182, 183]. Amore
precise test of the use of the above approach with Lennard-
Jones clusters requires examining the behavior of a larger
system, e.g., a closed-shell icosahedral structure consisting of
55 or 147 atoms. We discuss this point below.

Table 12. The parameters of an isolated Lennard-Jones cluster consisting
of 13 atoms at the melting point. The data were obtained on the basis of
Ref. [8].

Parameter Value

Em

DE
Z�Em�
Tsol

Tliq

Tm

Z�Tm�
DE
Cmax

13.6
2.46
0.39
0.32
0.26
0.29
0.46
8.5

18

Note. Bond dissociation energy D is adopted as an energy unit.

376 R S Berry, B M Smirnov Physics ±Uspekhi 48 (4)



We apply formula (5.14) as the definition of the
temperature of cluster atoms, and use formula (5.12a) for
the entropy variation dSth that corresponds to the thermal
motion of atoms of a cluster possessing two aggregate states.
Note that this is not a unique definition of the effective
temperature of a microcanonical system, and different
definitions may give different results, even different signs
[184]. Our chosen definition gives

1

T
� wsol

Tsol
� wliq

Tliq
: �5:19�

From this we obtain the effective cluster temperature on the
basis of our chosen definition, if criterion (5.18) holds true:

T � T� DT
2

1ÿ p

1� p
: �5:20�

It follows from the analysis of Section 5.1 that an isolated
cluster with two aggregate states can be considered in the two-
temperature approach if the criterion (5.2) holds true, i.e., a
typical time teq for thermodynamic equilibration of the
atomic thermal motion in each aggregate state is short
compared with the dwell time tag of the cluster in each
aggregate state. However, if we observe a cluster over a time
long compared with tag, we can model the cluster with two
aggregate states as a cluster with one aggregate state, the
average of the two states observable by shorter-time observa-
tions, and introduce in this way a single average cluster
temperature T. This means that we consider the cluster
within the framework of classical thermodynamics; in this
case, one can find the cluster temperature from expression
(5.14) in which the entropy and the internal energy dEth relate
to the thermal motion of atoms, as they do in formulas (5.15):

T � wsol Tsol � wliqTliq : �5:21a �

This temperature definition may be used in the context of
conventional statistical physics, i.e., on the basis of a very
long-time average. On the basis of formulas (5.9) and (5.17),
in the limit (5.18) this expression gives

T � T� DT
2

1ÿ p

1� p
: �5:21b�

We see that there is no difference between the thermodynamic
(5.20) and kinetic (5.21b) temperatures for a cluster with two
aggregate states in the limit (5.18) under consideration if we
restrict the discussion to the first expansion term over this
small parameter.

Note that, because the vibrational and configurational
degrees of freedom are separated, one can introduce sepa-
rately the temperature Tcon of configurational excitation on
the basis of a formula analogous to Eqn (4.7):

Tcon � DE
DS� ln�wsol=wliq� ; �5:22�

where we resorted to expression (5.13) for dEcon, and (5.12b)
for dScon. Also, we continue to use the approach of two
aggregate states and assume that the energy of configura-
tional excitation DE is independent of the vibrational energy.
At the melting point, the temperature of configurational
excitation Tcon � DE=DS coincides with that defined by

formulas (5.14) and (5.15) at thermodynamic equilibrium.
The melting point corresponds to the relation DF � 0, where
DF is the change in the cluster's free energy at the phase
transition.

Thus, the `proper' cluster temperature is a parameter of an
atomic system at thermodynamic equilibrium. An isolated
cluster, especially if it resides near the point of exact phase
equilibrium, is not a system in thermodynamic equilibrium
and may be characterized by two temperatures. But if the
difference of the solid and liquid temperatures is relatively
small, one can consider this cluster a near-equilibrium system
with one temperature. However, it is sometimes possible to
distinguish the effective temperatures for different phases of
clusters in microcanonical ensembles.

Up to this point, we have defined the temperature of a
microcanonical system in terms of the entropy derivative of
the energy, as in equation (5.14). We reiterate that to do this
one must use the microcanonical entropy, not the canonical
entropy, for which the classical relation dE= dS � 1=T is
valid for canonical systems in equilibrium. Alternatively, one
can deéne the temperature of the ensemble in terms of the
mean kinetic energy per degree of freedom, Ekin, as
T � 2hEkini=�3nÿ 6�. In common with the previous
deénitions of microcanonical temperature, especially in the
range of coexisting phases, we may take this average over
times short enough to see the individual aggregate phase
states, or over a time long enough to capture only a single
average aggregate state. It is precisely the differences among
these deénitions that resolve the apparent paradoxes of
negative heat capacities [184].

5.4 Heat capacity of an isothermal cluster near
the phase transition
We define the cluster heat capacity on the basis of formula
(4.10) as

C � dE

dT
; �5:23�

where dE refers to the total cluster energy including both the
vibrational motion of atoms and configurational excitation,
whereas the translational cluster temperature T characterizes
thermal motion of atoms only. This definition applies to both
cases, whether the cluster is in a canonical ensemble in
accordance with the criterion

tag 4 tth �5:24�

or is in a microcanonical ensemble according to criterion
(5.3). In the case of a canonical ensemble, the cluster
temperature is identical for both aggregate states. Then,
introducing the average energy Econ of configurational
excitation, Econ � DEwliq, where the energy DE of configura-
tional excitation is assumed to be a constant in the range of
the phase transition, we obtain, from formulas (4.10) and
(4.11), the cluster heat capacity

C � C0 � dEcon

dT
� C0 � DE 2

T 2

p

�1� p�2 : �5:25�

The contribution to the heat capacity C0 due to vibrational
motion is assumed to be independent of the temperature. For
a large cluster consisting of n4 1 atoms, the quantitiesC0 and
DE are proportional to n, and the height of the resonance or
maximum increases as � n2, but its width is � 1=n. Thus, the
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heat capacity consists of two parts: the first is the conven-
tional vibrational contribution, and the second is due to
configurational excitation. This part produces the reso-
nance-like peak at the temperature of equal free energies,
and the heat capacity near the phase transition temperature
can be represented in the form

C � C0 � Cmax exp
�ÿ a�Tÿ Tm�2

�
;

Cmax � DE 2

4T 2
m

�
�
DS
2

�2

; a � DE 2

4T 4
m

�
�

DS
2Tm

�2

: �5:26�

This relation is valid under the condition DE4Tm. One can
see that the `resonance' or peak corresponds to a narrow
range of temperatures DT � aÿ1=2 � Tm=DS5Tm. For a
bulk system of bound atoms, this contribution tends to
infinity at its maximum. Indeed, the ratio of the second term
in formula (5.25) to the first is � n2. Hence, determination of
the heat capacity of a large cluster reveals its melting point
with high accuracy.

5.5 Heat capacity of an isolated cluster near
the phase transition
For an isolated cluster in a microcanonical ensemble, we may
assume that the caloric curve far from the melting point can
be approximated by two straight lines. One can expect two
forms of the caloric curves near themelting point, as shown in
Fig. 15: in case 1, the cluster heat capacity is positive at any
temperature, and in case 2 it is negative near Tm. In principle,
both cases are possible. Based on their experimental study of
sodium clusters consisting of hundreds atoms,Haberland and
coworkers [180, 181] infer that the case of the negative cluster
heat capacity near Tm is more representative. Initially, the
accuracy of the experimental data [173, 174, 182, 183] left
open the possibility of questioning that inference, but more
recent, independent measurements have made the case for
some microcanonical negative heat capacities much more
plausible [185, 186]. All these experiments, in effect, base the
evaluation of temperature on the kinetic energy of the
particles of the clusters. It is easy to understand how this
definition allows for negative heat capacities.

Below, we analyze this problem using our simplified
approach within the framework of the statistical and
thermodynamic analyses. We introduce a general tempera-

ture for an isolated cluster, which can be found both in the
solid and liquid states, and assume the energy of configura-
tional excitation to be small compared to the thermal
excitation of the cluster. Considering this problem in terms
of two aggregate states, with the additional simplifying
assumption that the separate caloric curves for the solid and
liquid states are parallel straight lines, we have fromFig. 15 or
formula (5.21a) for the cluster's translational temperature

dT � dTsol ÿ DT dwliq : �5:27a�

Let us introduce the energy of thermal excitation
dEth � C0 dTsol � C0 dTliq, which is responsible for the
cluster's shift along one caloric curve in Fig. 15, and the
energy of configurational excitation dEcon � DEdwliq, which
is responsible for displacement between two caloric curves.
Then, we arrive at the total energy change dE of an isolated
cluster in the following form

dE � dEth � dEcon � C0 dTsol � DE dwliq :

�5:27b�

Under these conditions, when equilibrium is established at
each new energy, every small increase in energy near the
melting point goes in part to the excitation of thermal
(vibrational) motion, and in part to configurational excita-
tion. If a new small portion of energy induces configurational
excitation, i.e., a small part of the injected thermal energy
excites configurational degrees of freedom, the effective
cluster temperature defined by the average kinetic energy of
atoms decreases when there is an increase in the total cluster
energy. Another way to picture this is in terms of the means
the population distributes itself over the potential energy
surface. The solid corresponds to a region of a deep and rather
narrow potential well. The liquid corresponds to a broad
region of high potential energy, like a high, uneven range. If
the density of available states is significantly higher in the
liquid region and increases with energy faster than the density
of states in the solid region, then increasing the energy of the
microcanonical ensemble will move systems from the deep
well of the solid to the high plain of the liquid. But the mean
kinetic energy in the high plain is necessarily less than that in
the deep well for this constant-energy system. Hence, the
temperature defined as mean kinetic energy drops as energy is
added, and the heat capacity, so defined, is negative for this
case. This is known as an `S-bend' in the cluster caloric curve.
Such cluster behavior is obtained both on the basis of
theoretical analysis [184, 187 ± 192] and experiments [173,
174, 182, 183, 186].

If we use two temperatures to describe an isolated cluster,
the translational and configurational, and employ formulas
(5.27) for the change of the translational temperature T and
the total cluster energy E, we find for the heat capacity of an
isolated cluster:

C � dE

dT
� C0

1� X

1ÿ X
; X � DT

dwliq

dTsol
: �5:28�

To deduce this formula, we took account of the relation
DE � C0DT. From this it follows that the cluster heat
capacity can be negative near the melting point, whereX > 1.

This view of the problem of heat capacities of clusters puts
it outside the traditional thermodynamic context for two
reasons. First, we introduced a time scale for observation

1

2

�T

T

Tliq

Tsol

Tm

dE

dT
� C0

DE

E

Figure 15.Caloric curves of an isolated cluster with two aggregate states in

the one-temperature approach [175]: 1 Ð the case of positive heat

capacity, and 2Ðthe case of negative heat capacity near themelting point.
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that allowed us to distinguish the two coexisting phases. This,
however, is in much the same spirit as the widely used
approach of `local thermal equilibrium', in which one can
use thermodynamics for regions local in space or time, even
though the entire system is out of equilibrium. (Typically, one
applies this approach to steady-state flows.) In particular, for
the time hierarchy of Eqns (5.2) and (5.4), we describe a
cluster with two aggregate states as having two different
translational temperatures. Second, the translational cluster
temperature does not coincide with the configurational one.
This is another kind of separation, again associated with time
scale separability, in which two sets of degrees of freedom
interact so weakly that it becomes possible to determine their
population distributions separately and, hence, to assign each
of them its own temperature Ð provided those distributions
correspond to a temperature at all. In reality, the vibrational
or translational temperature is sure, in this context, to be
associated with a thermal distribution. The distribution of
population among configurational states may not actually
correspond as closely to a thermal distribution. However, we
assume here that in the cases we are considering the
distribution is close enough to thermal to allow us to assign
an effective configurational temperature. Hence, it is not
appropriate to describe a microcanonical ensemble with two
phases in dynamic equilibrium in terms one would use for a
system in thermodynamic equilibrium, with a single tempera-
ture. The negative heat capacity exhibited in several such
systems is a reflection of changes of population distributions,
but not of thermodynamic conditions [175].

6. Kinetics of voids in some phenomena

6.1 Freezing point for bulk inert gases
Condensed inert gases, like other bulk ensembles of bound
atoms with pairwise interactions, have two aggregate states,
liquid and crystalline. At each temperature except that of
thermodynamic phase equilibrium, one of these states is
stable, and the other is metastable. Relaxation of configur-
ationally excited states will then transfer the ensemble of
atoms into a stable or metastable state. We will consider this
process at temperatures below the melting point from the
standpoint of configurational excitation of an ensemble of
bound atoms.

Indeed, taking a void as an elementary configurational
excitation, one can utilize minima of the free energy or
maxima of the partition function as functions of the number
of voids inside the system (Fig. 16) to define the aggregate
states. (As for condensed inert gases, here we ignore the
pressure term in the free energy expression.) At the melting
point, the minimum values of the free energy (or maxima of
the partition function) for the solid and liquid states coincide.
But as the temperature decreases, the liquid minimum of the
free energy curve rises with respect to the solid minimum and
the curve itself becomes flatter. As a result, there is a critical
temperature at which the liquid minimum disappears. This
temperature is called the `freezing limit' and corresponds to
the lowest point of the caloric curve for which the liquid state
has any stability, as shown in Fig. 17 for argon [37].

Below the freezing limit, apart from the defects that occur
in any solid at equilibrium at a temperature above 0 K, any
configurationally excited state of an ensemble of bound
atoms is unstable. This means that relaxation of such a state
leads to a state with free energy near that of the global

minimum. The number of voids is small in such a state and
diffusion is slow, as in normal solids. The transition of a bulk
system to this state occurs through the departure of voids
from the system, via their transport and evaporation. From
the standpoint of the landscape of the potential energy
surface, this process is a series of successive transitions
between neighboring local minima of the surface. But any
transition between local minima is an activation process, and
the rate of such a transition decreases with decreasing
temperature according to the Arrhenius law. Hence, config-
urationally excited states of such a cold, solid body are
characterized by a long lifetime that grows with decreasing
temperature. According to the usual definition [38, 193 ± 195],
a glassy state of a system of bound atoms is a thermodyna-
mically unstable state that has an arbitrarily long lifetime if
the kinetic temperature tends to zero. The rate of decay of this
state is expressed by the Arrhenius exponential decay formula
due to the thermal barrier or barriers associated with this
transition. Using the analogy with this definition, we will
consider configurationally excited states of an ensemble of
bound atoms at low temperatures as glassy-like or glassy
states.

6.2 Kinetics of the cooling process and formation
of glassy states
Let us consider the process of formation of a glassy state for a
bulk condensed inert gas as it cools, or the decay of such a
state as it is warmed. We suppose that the transition to a new
aggregate state in a homogeneous system occurs adiabati-
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Figure 16. The dependence of the reduced free energy of bulk argon on the
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Figure 17. The caloric curves of bulk argon [37].
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cally, so that the rate of the configurational transition
coincides with the rate of variation of the imposed tempera-
ture. In the case under consideration, the configurational
transition results in the diffusion of internal voids to the
boundary of the system or from it to the interior. A typical
time td of the void diffusion process is estimated as

td � l 2

Dv
; �6:1�

where l is a typical size of the object or a typical distance from
an internal point of the object to its boundary, and Dv is the
diffusion coefficient of voids inside the object. Since the
displacement of voids is determined by a reverse displace-
ment of atoms, the diffusion coefficient of voids can be
evaluated in the following way

Dv � oDa
2 exp

�
ÿ Ea

T

�
; �6:2�

whereoD is the Debye frequency, a is the lattice constant, T is
a current temperature, and Ea is the activation energy for the
void displacement that results from the displacement of
atoms and depends on the concentration of voids or
vacancies inside the object. The effective activation energy
drops if the concentration of voids increases.

Assuming the rate of the temperature variation dT=dt is
constant, we obtain for a typical time tc of the cooling
process:

1

tc
� 1

DT
dT

dt
� Ea

T 2

dT

dt
; �6:3�

where DT � T 2=Ea is the transition temperature range in
which the diffusion coefficient varies sharply. Defining the
temperature Tg of the glassy transition by the relation
td�Tg� � tc, we obtain, from formulas (6.1) and (6.3), the
sought-for (implicit) relationship

Tg � Ea

�
ln

�
oDa

2

l 2
T 2
g

Ea� dT=dt�
��ÿ1

: �6:4�

Formula (6.4) connects the parameters of processes that are
responsible for the glassy transition. This formula is valid for
both cooling and heating processes.

In considering the glassy state of our systems as contain-
ing frozen voids, we distinguish two methods of preparing
such glassy states. The first, which we discussed previously,
results from fast cooling of the liquid state; in the second
method, the glassy state is prepared by depositing atoms on a
very cold target. The initially deposited atoms, too cold to
diffuse rapidly to a relaxed structure, form an amorphous
body whose structure is precisely the glassy state of this
system. This amorphous structure may transform into a
crystal as a result of relaxation; naturally this transition is
facilitated by increasing the temperature, still keeping it below
the melting point. This mode of forming a glassy state was
realized in an experiment [196] in which amorphous argon
was prepared by depositing an argon stream on a copper
substrate at a temperature of 10 K. Note that the triple point
of bulk argon is Ttr � 83:7 K (Table 8), and its freezing point
is 52 K [165]. Amorphous argon is formed under these
experimental conditions if the deposition rate is less than
3� 10ÿ9 cm sÿ1. We refer to this amorphous structure of
argon as a glassy state. Subsequent heating induces an

annealing transition to the crystalline state, as shown in
Fig. 18 [38, 196].

Let us now examine the nature of transitions involving the
aggregate or glassy-like states of a bulk system of bound inert
gas atoms, as voids in this system diffuse to its boundary or
from it. The rate of transition between one aggregate state
and another or the rate of relaxation in the glassy state of this
system is expressed through the diffusion coefficient Dv of
voids, which is connected with the self-diffusion coefficient of
atoms Da by the relation

Dv � v

n
Da : �6:5�

As an activation process, diffusion of voids is characterized
by an activation energy. In the solid state, the relative number
of vacancies is estimated by

v

n
� exp

�
ÿ ev

T

�
;

where ev is the energy of vacancy formation. Hence, the
activation energies for the self-diffusion coefficients of
atoms Ea, for which the data in Table 13 are taken [197],
and the diffusion coefficients of voids-vacancies (Esol) differ
from those of the solid crystal by the energy ev of formation of
an individual vacancy (Ea � Esol � ev). In the case of the
liquid state, for which v � n, the activation energies for these
diffusion processes are identical. The parameters of the
atomic self-diffusion coefficients in liquid inert gases, given
in Table 13 [198 ± 200], include the activation energies for the
diffusion of voids in the solid (Esol) and liquid (Eliq) states.
The diffusion coefficient of voids for the solid aggregate state
of inert gases is assumed to have the form

Dv � dsol exp

�
ÿ Esol

T

�
; �6:6a�
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and for the liquid aggregate state it is

Dv � dliq exp

�
ÿ Eliq

T

�
: �6:6b�

The parameters of these formulas are listed in Table 13. The
energy parameters are measured in units of the energy D of
breaking one bond. Comparison of the activation energies of
the diffusion process for voids and energies of formation of
vacancies and voids shows a correspondence between these
values. Therefore, the activation energy of the void diffusion
process may be expressed through the energy of void
formation, whose values are given in Table 11.

Note that the quantity eliq in Table 13 differs from the
quantity e�vliq� in Table 11. Indeed, e�vliq� is the average
energy of void formation, if we start from the crystal state. In
contrast to this quantity, eliq is the energy of formation of a
new void if the system is found in the liquid state. Within the
framework of the model under consideration, the latter is
approximately equal to

eliq � e�vliq� ÿ DHfus :

One can utilize various parameters of the system in order
to distinguish the solid and glassy-like states; for this purpose,
guided by the experiment [196], we use the saturated vapor
pressure over a plane surface of the system. According to the
Clapeyron ±Clausius law, the saturated vapor pressure is
given by [4, 6]

p�v;T� � pv exp

�
ÿ e�v�

T

�
; �6:7�

where e�v� is the mean binding energy of a surface atom in a
system with a given concentration of internal voids; equiva-
lently, it is the sublimation energy per atom for a bulk system,
with a given concentration of voids v inside. We assume that
the saturated vapor pressures may refer to any concentration
of voids, and are identical at the triple point, as they must be
for the solid and liquid states. This gives for the pre-
exponential coefficient:

pv � p0 exp

�
e�v� ÿ esol

Ttr

�
; �6:8�

where esol is the binding energy per atom for the solid state,
with esol � e�0�, p0 is the pre-exponential factor in formula
(6.7) for the solid state, andTtr is the triple-point temperature.
It follows from this formula that the pre-exponential factor in
formula (6.7) drops as the density of voids increases. Of
course, formula (6.8) is correct for the liquid state.

From this we have

p�v;T�
psol�T� � exp

�ÿ
esol ÿ e�v��� 1

T
ÿ 1

Ttr

��
; �6:9�

where psol�T� is the saturated vapor pressure over the solid
surface at a given temperature. In particular, for the
metastable liquid state at a temperature T below the triple
point, formula (6.9) yields

pliq�T�
psol�T� � exp

�
DHfus

�
1

T
ÿ 1

Ttr

��
; �6:10�

where DHfus is the specific fusion enthalpy.
Along with the temperature of the glassy transition, which

is given by formula (6.4) and characterizes the equality of the
rate of heating and the process of void diffusion, we introduce
the temperature T� from which the subsequent growth of the
saturated vapor pressure can proceed. For the heating of an
amorphous state of an inert gas, this temperature is defined by
the relation

p�v;Tg� � psol�T�� ;

and according to formula (6.9) we obtain

e�v�
�

1

Tg
ÿ 1

Ttr

�
� esol

�
1

T�
ÿ 1

Ttr

�
: �6:11�

Let us apply these formulas to analyze the results of the
experiment [196] (see Fig. 18) in which amorphous argon was
prepared by deposition of an argon stream on a copper
substrate at a temperature of 10 K. The triple point of bulk
argon is Ttr � 83:7 K. Warming the deposited material leads
to an annealing transition to the crystalline state [38, 196]. The
typical film thickness in this experiment was 10 mm, thus
exceeding the distance between nearest neighbors in bulk
condensed argon by more than three orders of magnitude.
Hence, this film can be considered to be bulk condensed
argon. A heating rate of dT=dt � 2 K minÿ1 leads to the
glassy transition at Tg � 20� 1 K, and the saturated vapor
pressure starts to grow from the temperature T� � 24� 1 K.
The results of this experiment are compared with the above
formulas in Table 14, if we assume that the amorphous state

Table 13. Parameters of void diffusion in condensed inert gases.

Parameter Ne Ar Kr Xe Average

D, K
Ea, K
Ea=D
Esol=D
dsol, 10ÿ4 cm2 sÿ1

Eliq, ¬
Eliq=D
eliq=D
dliq, 10ÿ3 cm2 sÿ1

l 2j� dT=dt�limj, K cm2 sÿ1

42
480� 20
11.4� 0.5
5.3� 0.5
3
113
2.69
2.1
2.7
0.014

143
1900� 100
13.3� 0.7
6.8� 0.7
3
352
2.46
2.0
3.7
0.11

200
2500� 100
12.5� 0.5
5.8� 0.5
2
402
2.01
2.1
1.5
0.16

278
3700� 100
13.3� 0.4
6.6� 0.4
1
607
2.18
2.1
2.2
0.22

12.6� 0.9
6.1� 0.7

2.3� 0.3
2.1� 0.1

Table 14. Comparison between theoretical and experimental evidence for
bulk condensed argon.

Tg, K T�, K e�v�, K Ea, K

Experiment [196]
Theory for liquid

20� 1

21
24� 1

23
730� 90

790
330� 20

350
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has the same concentration of voids as the liquid state and we
treat experimental data on the basis of formulas (6.4) and
(6.11). In addition, the parameter l in formula (6.1) is the
thickness of the deposited film. This comparison shows the
identity of the amorphous state of argon obtained by
deposition of atoms on a cold target and the glassy-like state
that we have described as a frozen liquid state at low
temperatures.

In treating the experimental data [196], we also found the
ratio between the binding energies in the glassy and solid
states: ev=esol � 0:78� 0:10. Note that the ratio of the binding
energies eliq and esol of the liquid and solid states is
eliq=esol � 0:85� 0:10 for inert gases on average [24, 111],
and is 0:86� 0:02 for argon. One can see that the binding
energy per atom in the glassy state ev implied by this
experiment coincides with the binding energy per atom eliq
for the liquid state within the limits of the accuracy of these
data. We obtain a striking analogy between the glassy and
liquid states, although they exist in different temperature
ranges. Hence, from this analysis for the simplest bulk
systems of bound atoms it follows that the glassy and
crystal-to-liquid phase transitions have a common feature:
both involve a change of configurational excitation. The
difference between these phenomena is that thermal excita-
tion of bound atoms influences the latter phase transition,
whereas thermal motion of atoms is not so important for
glassy-like states because of the low temperatures at which
they exist.

Thus, the void concept of configurational excitation for
simple ensembles of bound atoms describes simultaneously
the formation of both the liquid aggregate states and the
glassy-like states. These voids are formed inside bulk systems
or on the surface of medium-sized or moderately large
clusters. Thermal vibrations of atoms influence significantly
the entropy of configurational excitation close to the melting
point, and are not important for the glassy-like states, since
these exist only at low temperatures where this influence is
weak.We can again apply the concept of time scale separation
to characterize and validate the glassy-like states, as well-
defined states with specifiable thermodynamic properties.

6.3 Glassy states of clusters
Let us once again use the concept of shell structure for the
ground and slightly excited configurational states of clusters.
If the clusters are not very large (e.g., in the nanoscale range),
those with a finite number of locally stable, configurationally
excited states form these states by the transition of atoms
from closed cluster shells to the surface to become floaters.
Such changes correspond to the formation of voids in the
outer shell that may diffuse into the cluster. Annihilation of
the simplest voids results in transitions of atoms from the
cluster surface to the outermost shell. This glassy-like state
may also be considered from the standpoint of the concept of
cluster configurational excitation as a result of the transition
of the potential energy surface of this cluster to local minima.
Because neighboring local minima of the cluster's configura-
tional energy are separated by energy barriers, transitions
from the ground cluster shell to excited configurations have
an activation character. Thus, the void concept of the liquid
and glassy-like states can be combined with our understand-
ing of the evolution of clusters as transitions between local
minima of the potential energy surface of clusters. Joining
these concepts is important for amore detailed understanding
of cluster behavior.

By analogy with a bulk system of bound atoms, we define
the glassy-like state of clusters as a configurationally excited
cluster state at low temperatures, low enough that diffusion is
on a slow, solid-state scale, rather than on a liquid-like scale.
Guided by systems of inert gas atoms, we will again consider
clusters bound by pair interactions of atoms. Such a cluster,
like the bulk solid state, may have more than one excited
aggregate state [171, 172] which corresponds to the melting of
different cluster shells. As the cluster size increases, only two
liquid aggregate states remain distinguishable, the surface
and volume liquid aggregate states. Because of the difference
in the binding energies for the internal and surface atoms,
these liquid states may be separated and distinguished
experimentally [201, 202]. Previously, we restricted ourselves
to the volume liquid state of bulk inert gases, while below we
consider excited cluster states in which the liquid or
amorphous character is restricted to the outermost shell.

We adhere to the principle of detailed balance that
connects the rates of cluster excitation nex and quenching nq
as a result of the thermal motion of bound atoms [33, 203 ±
205]; this has the form

nex � nq g exp
�
ÿ De

T

�
; �6:12�

where g is the ratio of the statistical weights for excited and
ground states, and De is the cluster excitation energy. In
particular, for the rate of excitation of a classical atom in the
cluster consisting of 13 atoms we take

nex � 12oD exp

�
ÿ Eb

T

�
a ; �6:13�

where oD is the Debye frequency, a typical frequency of
atomic oscillations; the factor 12 takes into account that each
surface atom can partake in this transition; Eb is the barrier
energy for this transition from the ground state, and a is the
geometrical factor, i.e., the range of solid angles for atomic
motion that determines this transition. For simplicity, we take
12a � 1, which gives an estimate for the cooling rate at which
the excited cluster state may be frozen:

dT

dt
>

T 2
m

Ea

oD

g
exp

�
ÿ Ea

Tm

�
: �6:14�

We used formula (6.4) and accounted for the probability of
quenching being maximal at the melting point; the activation
energy is Ea � Eb ÿ De � 0:56D [8] in the case of the 13-atom
cluster.

Comparing criterion (6.14) with the criterion for the
formation of the glassy state in a bulk system of bound
atoms, Tg < Tm, where Tg is given by formula (6.4), we find
two aspects of the difference of these criteria for bulk systems
and clusters. First, the activation energy is higher for a bulk
system becausemore energy is required to change the position
of an internal crystal atom than to move a surface atom. In
particular, we have exp�Ea=Tm� � 400 in the case of bulk
argon, while this value is only 8 for the Lennard-Jones cluster
consisting of 13 atoms. Second, the criterion (6.4) for the
formation of the glassy state of a bulk system contains an
additional large factor l 2=a2 in comparison with the cluster;
this factor is responsible for the diffusion of voids to the
boundary. Although small and moderate-sized clusters
exhibit no volume diffusion, but instead have excited surface
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atoms, motion of voids over the cluster surface can include
many configurations, as demonstrated by Fig. 19 [39], where
possible positions are shown for atoms on the surface of
clusters with closed shells. Then, instead of the factor l 2=a2 in
formula (4.6) formacroscopic systems, we obtain the quantity
g2 for a configurational state with excited surface atoms, for
which the statistical weight g of an excited atomon the surface
characterizes the diffusion of atoms over the cluster surface.
Hence, configurational entropy is typically significant for a
cluster with voids. On the other hand, one can reach high rates
of cooling dT=dt with clusters by inserting a cluster into a
cold gas, which provides frequent collisions with the
responsive cluster surface.

Let us now estimate the critical density of a cold gas that
would provide fast enough cooling of the cluster to `freeze
in' its excited configurational state. We apply to a simple
model for an exchange of energy between a colliding atom
and a cluster [24, 33], so that the average energy of an atom
before collision is 3T0=2, where T0 is the gas temperature
expressed in energy units (as kBT ); after the collision, the
atomic energy is 3T=2, where T is the cluster temperature.
Then, the heat balance equation of the cluster takes the
form

cp
dT

dt
� 3

2
�T0 ÿ T �NvTs ; �6:15�

where cp is the cluster's heat capacity, N is the density of gas
atoms, vT is the average atomic velocity, and s is the cross
section for atom± cluster collisions. Assuming the cluster
atoms behave classically, we use the Dulong ±Petit formula
cp � 3n for the heat capacity, where n is the number of cluster
atoms. The liquid drop cluster model for collision processes
[24, 33, 111] yields

s � p r 2W n2=3 ;

where rW is theWigner ± Seitz radius. Under these conditions,
the criterion (6.14) takes the form

dT

dt
> n1=3

T 2
m

Ea�Tm ÿ T0�
oD

v r 2W
exp

�
ÿ Eb

Tm

�
; �6:16�

where v � �����������������
2pT0=m

p
, and m is the atomic mass; we used

relations (6.14) and Eb � Ea � De. As a specific example, we
apply this estimate to the argon (Lennard-Jones) cluster
consisting of 13 atoms (Tm � 44 K) [155] and inserted into
helium gas at a temperature of 20 K. Then, formula (6.16)
gives the density of helium atoms:

N4 3� 1017 cmÿ3 ;

a criterion that may be fulfilled in reality.
This example demonstrates the possibility of conserving a

cluster's configurational excitation by cooling it rapidly
enough. Since excited configurational states of metallic
clusters may be detected, for example, by collisional ioniza-
tion of such clusters with a metallic surface or perhaps by
photoionization, one can check the possibility of forming the
glassy-like cluster state when a liquid metallic cluster is
inserted into a cold gas. Determination of radial density
distributions for clusters bound primarily by pair inter-
atomic interactions may also become a way to probe
densities of vacancies [202]. Thus, the configurational excita-
tion of small clusters, via passage of surface atoms from the
outermost closed shell to the cluster's surface, is an analog of
the formation of a bulk glassy state with frozen surface voids.
In fact, configurationally excited cluster states are analogs of
glassy-like states, if their lifetime is long enough, and such
states may be formed by the evolution of thermodynamically
stable or metastable states.

Simulations show that it should also be possible to
prepare some glassy states of clusters by the quenching that
occurs when a cluster strikes a surface, exchanging momen-
tum extremely efficiently and rapidly with that surface, and
then atoms from the substrate evaporate and quench the
cluster faster than its vibrations can equilibrate with the
substrate. It had been found from simulations [206] that
some alkali halide clusters consisting of many dozens or
hundreds of particles could be quenched to a glassy state if
they could be cooled from the liquid state at a rate of 1013 K
sÿ1. It was then shown by Cheng and Landman [207] that this
cooling rate could be achieved if sodium chloride clusters
were to strike solid argon at moderately high energy. The
momentum transfer between argon and NaCl clusters is very
efficient, and the nearby argon substrate atoms evaporate at a
high rate.

On the basis of the above analysis, the glassy state concept
can be carried over from complex (i.e., bulk macroscopic)
systems to simple ones, specifically to atomic clusters.
According to its definition [38], the glassy state is a
thermodynamically unstable configurational state of an
ensemble of bound atoms formed by fast cooling of the
system, for which extremely slow cooling of this ensemble
would yield a true first-order phase transition by overcoming
an activation energy. For glasses to relax to ordered solids,
this transition involves the change of positions of some
constituent particles, so that finally the system takes on a
crystalline structure as it undergoes `infinitely' slow cooling.
One more peculiarity of this transition is the difference in
densities of the structures for the initial and final states.

a

b

Figure 19. The developed view of the surface of the icosahedron cluster

with the closed layers consisting of 13 (a) and 55 (b) atoms [39]. Solid

circles are the surface cluster atoms, the open squares are positions of an

atom located on the cluster surface; migrations of this atom over the

cluster surface are shown by solid lines, while boundaries of the surface

cluster triangles are denoted by fine solid lines. Arrows show transitions of

a test atom into the ground state, while double arrows relate to the same

atom of a three-dimensional structure, and dotted lines indicate the ways

for the transformation into the three-dimensional cluster.
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Therefore, together with the restructuring of the atomic
positions, voids must diffuse outside the system or into the
system.

This approach is complementary to a more traditional
free-volume model, in which detailed attention is directed
toward the change in available free volume as a system goes
between liquid and glass [208 ± 210]. Here, our emphasis is on
the change of the kinetics with temperature, specifically on
the way how reducing temperature inhibits passage over
saddles when the free volume remains relatively unchanged.
In this sense, this treatment differs in emphasis but is not
inconsistent with amodel that emphasizes relatively small but
perhaps important changes in the volumes of vacancies at the
glass transition.

Focusing on simple bulk systems of bound atoms such as
condensed inert gases, we find no need to invoke the
restructuring of chemical bonds in such systems, as appar-
ently takes place in real glasses [38]. Rather, the transport of
voids proceeds by analogy with glasses, with an activation
character. In the case of clusters, cold systems exhibiting a
finite number of locally stable, configurationally excited states
formed by the transition of atoms from closed cluster shells to
the surface conform to the model of a glassy state. This
corresponds to the formation of surface voids, and the
annihilation of voids results in the transition of atoms from
the cluster surface to its outermost, unfilled shell. From the
other standpoint, these atomic transitions result from transi-
tions between local minima of the potential energy surface of
this cluster. Because neighboring local minima of the cluster's
configurational energy are separated by energy barriers [10,
18, 19], transitions from the ground cluster structure to excited
configurations show an activation character. Thus, known
excited structures of simple systems of bound atoms conform
to the definition of the glassy state. Being based on the nature
of the glassy-like states of simple systems as a result of the
formation of voids, one can analyze these states inmore detail.

6.4 Growth of a solid nucleus in liquid
as a result of void transport
The void concept of configurational excitation may be used
for the analysis of nucleation phenomena in condensed
systems. In contrast to the previous problems, in this case
we obtain a nonuniform distribution of voids in a space, and
therefore it is necessary to analyze the stability of such a
distribution. For definiteness, we consider the growth of a
spherical solid nucleus of a current radius r0 in a liquid. In
terms of voids, the void concentration for this distribution is
close to zero inside the nucleus and is close to the liquid value
outside it. Hence, a gradient of void concentration occurs in
this case, and the transport of voids causes the nucleus to
grow. Thus, we consider the growth of a favorable phase in a
macroscopic ensemble of atoms with a pairwise interaction as
a result of void transport. Evidently, such a consideration is
valid when we deal with many elementary configurational
excitations Ð voids, and therefore we refer below to bulk
systems of bound atoms.

The void flux in the one-dimensional case is given by the
equation

j � ÿDvN
dc

dx
� wvNc : �6:17�

Here, x is a coordinate, N is the density of atoms, c is the
concentration of voids defined as the number of voids per
given number of atoms,Dv is the diffusion coefficient of voids

in this system, and wv is the drift velocity of voids. Note that
transport coefficients of voids are connected with transport
coefficients of atoms in this system, namely, withDa, the self-
diffusion coefficient of atoms, by formula (6.5), and with wa,
the drift velocity of atoms. Indeed, the atomic flux ja is equal
to the void flux and is directed oppositely. Hence, we have

Dv � Da

c
; wv � wa

c
: �6:18�

The drift velocity of atoms and voids is determined by the
force dm=dx that acts on an atom because the atomic
chemical potential m varies in space (correspondingly, a
force acting per individual void is dm=c dx). On the basis of
the Einstein relation between the mobility and diffusion
coefficient, assuming the gradient of m to be relatively small
(except, perhaps, at the boundary of the nucleus), we find

wa � Da

T

dm
dx

�6:19�

and the same relation holds between the transport coefficients
of voids. On the basis of this formula, let us represent the void
flux (6.17) in the form

j � ÿDv N
dc

dx

�
1� c

T

dm
dc

�
; �6:20�

while the dependence m�c� is depicted in Fig. 20. The values of
the void diffusion coefficients for the solid and liquid
aggregate states of inert gases are collated in Table 13 in
accordance with formulas (6.6).

Applying the one-dimensional result (6.17) to the growth
of a spherical nucleus, we get for the total flux of voids J
through a sphere of a radius r:

J � 4pr2j �r� � ÿ4pr2DvN
dc

dr

�
1� c

T

dm
dc

�
; �6:21�

and one can consider the total flux to be independent of r,
since voids are not formed in space. We can reduce this
problem to the previous one-dimensional case by a change in
the variable

x � 1

4pr
: �6:22�

Solid
state

Liquid
state

cliq

cc 0crccr

csol

m

Figure 20. The dependence of the chemical potential on the void

concentration for a system of bound atoms with a pair interaction

between atoms and a void gas inside it. The void concentrations csol � 0

and cliq correspond to the solid and liquid aggregate states, the maximum

of the chemical potential corresponds to the void concentration cmax, and

the range between c 0cr and ccr is not stable, i.e., small uniformities lead to an

instability that separates the system into two phases. This dependence

relates to the melting point.
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We now consider the nucleation process at pressures
comparable to that at the triple point in inert gases. In this
case, one can neglect the pressure term in the expressions for
the Helmholz free energy F and Gibbs free energy G of the
system, i.e., take F � G, so that these thermodynamic
parameters are determined by the entropy term. Correspond-
ingly, the chemical potential of this system consisting of n
atoms assumes the form

m�c� � ÿT lnZ

n
� c
�
e�c� ÿ Ts�c�� : �6:23�

Here, Z is the partition function of the void gas, e�c� is the
energy of formation of one void at a given void concentration,
s�c� is the entropy of formation of one void, g�c� is the
statistical weight of an individual void, and the energy of
formation of one vacancy is e0 � e�0�. The dependence (6.23)
is portrayed in Fig. 20. It follows from this dependence and
formula (6.21) that the spatial distribution for the void
concentration is unstable for concentrations of voids at which

1� c

T

dm
dc

< 0 ; �6:24�
so that the transport of voids is directed opposite to a void
gradient. Table 15 lists the values of the critical void
concentration ccr near the liquid minimum that is the
boundary of the void stability. In accordance with formula
(6.24), this concentration satisfies the relation�

dm
dc

�
ccr

� ÿ T

ccr
: �6:25�

Thus, an evolving surface arises on the boundary
separating the solid nucleus and its liquid environment, and
the void concentration varies discontinuously at this bound-
ary. This creates a tension on the liquid environment to
shrink. As a result, voids move outside the dividing surface,
and the solid nucleus expands as the void-free region grows.
Because the chemical potential has different values in the two
regions Ð that is, msol � m�csol� and mliq � m�cliq� on different
sides of this surface, the surface is unstable and moves. We
connect the motion of the growing sphere with the drift of
atoms or voids. Indeed, let us introduce the effective
difference in the chemical potentials Dm�r� at a given distance
r from the nuclear center:

Dm � mliq ÿ msol �
�1
r0

F�r� dr �26�

and r5 r0, where r0 is the current nuclear radius. From this it
is inferred that the drift velocity of atoms on the basis of
formula (6.18) may be represented as

wa � r0
r2

Dliq

T
�mliq ÿ msol� ;

and the total atomic flux towards the solid nucleus through a
sphere located a distance r from it is equal to

J � 4pr2waN � 4pr0N
Dliq

T
�mliq ÿ msol� :

Evidently, this flux does not depend on r, despite its
appearance in formula (6.26).

This atomic flux is equal to the void flux outside the solid
nucleus. As a result of void drift, the solid nucleus expands so
that

J � 4pr20
dr0
dt

Ncliq :

This gives the rate of growth of the nuclear radius:

dr0
dt
� Dliq

r0 cliq

�mliq ÿ msol�
T

; �6:27�

where Dliq is the diffusion coefficient of voids in the liquid
state.

We now evaluate the rate of growth of the solid nucleus in
the case in which the current temperature T is close to the
melting point Tm. We then have mliq ÿ msol � �Tm ÿ T �s,
where s is the transition entropy per atom, and formula
(6.27) yields

dr20
dt
� dsol

cliq

�Tm ÿ T �
T

exp

�
ÿ asol

�Tm ÿ T �
D

�
;

dsol � 1

2
Dliq�Tm� s ; asol � EliqD

T 2
m

: �6:28�

Table 15 contains the values of parameters dsol and asol for
inert gases, as well as some other parameters.

In considering this problem, we do not include any
contribution of surface effects to the chemical potential.
Therefore, we neglect the critical phenomena that occur
during nucleation and are responsible for the first appear-
ance of growing nuclei [6, 38]. Rather, any current nuclear
radius invoked here is assumed to exceed the critical radius
significantly. Next, we have concentrated on the growth of a
solid nucleus inside a liquid that results from a force induced
by a difference between the chemical potentials for the solid
and liquid aggregate states. This force acts on each void
independently and compels it to move from the dividing
surface. Hence, the rate of expansion of the solid nucleus
does not depend on the void concentration and is determined
by the friction of moving voids, so that the frictional force is
expressed through the diffusion coefficient of voids in this
system. Therefore, the growth of the liquid nucleus in a solid
will proceed by the same scenario, and the rate of an increase
in the radius of the liquid nucleus inside a solid, by analogy
with formula (6.28), is given by

dr20
dt
� dliq

csol

�Tm ÿ T �
T

exp

�
ÿ aliq

�Tm ÿ T �
D

�
;

dliq � 1

2
Dsol�Tm� s ; aliq � EsolD

T 2
m

: �6:29�

For condensed inert gases, the parameters of this formula are
listed in Table 15. One can see that the growth rate for the
solid nucleus is lower than that for the liquid, because the void
diffusion coefficient in solids is lower than in liquids.

Table 15. The parameters of growth of a solid nucleus in liquid inert gases.

cliq c 0cr dsol,
10ÿ5 cm2 sÿ1

asol dliq,
10ÿ8 cm2 sÿ1

aliq

Ne
Ar
Kr
Xe

0.31
0.32
0.32
0.31

0.25
0.25
0.26
0.25

8.2
17
14
17

8.0
7.2
6.3
6.8

10� 10�0:4

1� 10�0:5

3� 10�0:4

0:4� 10�0:3

16� 2

20� 2

17� 2

20� 1
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Thus, considering an ensemble of bound atoms as
consisting of atoms and voids, one can treat the nucleation
process as a result of the transport of atoms or voids inside
this system. From the standpoint of the behavior of the
system's potential energy surface, an elementary displace-
ment of a void is a transition of the system between two
neighboring local minima of the potential energy surface. We
conclude that a thermodynamic instability of configurational
excitations occurs when the degree of configurational excita-
tion varies in space to make the aggregate state change from
solid to liquid. This implies the impossibility of a continuous
transition between the solid and liquid aggregate states by
varying the density of voids. Therefore, in the spatial
coexistence of solid and liquid states that occurs in nuclea-
tion processes, the dividing surface forms and separates the
solid and liquid phases. When a nucleus of a new phase grows
inside an old phase, the difference of the chemical potentials
on two sides of the breaking surface creates a force that acts
on voids of an old phase and compels them to move such that
the nucleus of the new phase grows. Because the displace-
ments of voids and atoms in this system are mutually
connected, the rate of the nucleus's growth is expressed
through the coefficient of self-diffusion of atoms in this
system.

7. Conclusions

Analyzing the phase transition for the simplest ensembles of
finite and infinite numbers of bound atoms allows us to
understand many details of this phenomenon. Concentrating
on the order ± disorder or solid ± liquid phase transition in
clusters and macroscopic systems of bound atoms with
pairwise atomic interactions, we start from the standpoint of
classical thermodynamics with each aggregate state charac-
terized by certain thermodynamic parameters. The complex
topographies of the potential energy landscapes for these
systems, with their many, many local minima, allow us to
view these atomic systems from another standpoint. Indeed,
in this space the system undergoes many oscillations in the
vicinity of any one minimum of the potential energy surface
and then occasionally transfers to a neighboring minimum.
This allows us to separate the thermal motion of a system,
corresponding to vibrations around any of the energy
minima, from configurational excitation that specifies a
given energy minimum. This leads to a redefinition of the
aggregate state as a group of configurationally excited states
with similar excitation energies. Together with concepts of
classical thermodynamics, separation of vibrational and
configurational degrees of freedom provides the basis for
our treatment.

Analyzing the phase transitions and the behavior of
systems near the melting point from this standpoint, we
obtain new details and new connections to related phenom-
ena for these systems with the simplest character of atomic
interactions. In addition, this analysis allows us to follow the
passage from clusters to bulk systems. Basing on the
simplified form of configurational excitation in which the
elementary configurational excitation corresponds to the
formation of one void, we demonstrate that the liquid state
which is metastable below the melting point can be realized in
this form only above the freezing limit, the lowest tempera-
ture for which the liquid has local stability, equivalent to the
spinodal limit. Below the freezing limit, excitation of voids
gives a thermodynamically unstable or glassy state, and the

void concept permits us to analyze the liquid and glassy states
from a common standpoint. Next, nucleation phenomena in
condensed matter, which correspond to the growth of a new
condensed phase in an old one, may be represented as a result
of void transport. In this way, one can relate various
phenomena in a condensed system within the framework of
the void concept.

It should be noted that any phase transition includes
simultaneously many atomic particles and therefore analytic
methods based on single-atom models are not suitable for its
analysis. Therefore, all the results are based either on
experimental data or on computer simulation of this
phenomenon. Hence, new results of this type lead to
improvements in the void concept of the phase transitions
and adjacent phenomena.
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