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Time autocorrelation function analysis of master equation
and its application to atomic clusters
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We derive the energy fluctuation �2E, and the time autocorrelation ���� and its Fourier
transformation—the fluctuation spectra S���—of the master-equation transition matrix. The
contribution from each eigenmode of the transition matrix to these fluctuation quantities reveals the
relevant importance of the individual mode in the relaxation processes. The time scales associated
with these relaxation processes are determined by the corresponding eigenvalues. Unlike traditional
time evolution analysis, the autocorrelation function and fluctuation spectra analysis does not
involve an arbitrary initial population. It is also more suitable for analyzing the underlying dynamic,
kinetic behavior near the equilibrium and the behavior of the long-time-scale rare events. We utilize
our technique to analyze the solid-liquid phase coexistence of the 13-atom Morse cluster and the
fcc-to-icosahedral structure transition of the 38-atom Lennard-Jones cluster. For the processes
studied, the fluctuation spectra from the master equation simplify the analysis of the transition
matrix, and the important relaxation modes are easily extracted. © 2005 American Institute of
Physics. �DOI: 10.1063/1.2000243�
I. INTRODUCTION

The relaxation processes of complex chemical systems,
such as clusters, glasses, peptides, and proteins, can exhibit a
variety of different time evolution behaviors ranging from
single exponential relaxation to multiexponential relaxation
or asymptotic power-law relaxation.1–5 These different relax-
ation behaviors are determined by the underlying potential-
energy surfaces �PESs� of the systems if the temperature of
the system is below the mode-coupling temperature, such
that the local barriers between different wells on PES are
larger than or comparable to the mean thermal kinetic energy
of the system.

The time evolution of the physical properties can be de-
scribed by stochastic master equation.4–9 A natural way to
define a state in the master equation is provided by the “in-
herent structure” analysis of the PES.10 Except at high tem-
peratures, the system will oscillate in the basin of attraction
around a local minimum, and the sporadic jumping processes
between the neighboring basins of attraction are Markovian.
The region around a local minimum of the PES can be re-
garded as a state, and the saddle points on the PES determine
the reaction rates of the jumping processes. The transition
matrix can be built from the database of connected minima
and saddle points, and the time evolution of the relaxation
process can be solved after diagonalization of the transition
matrix. The master equation generally takes less time to
solve than molecular-dynamics �MD� simulation, since the
only intensive calculations are the determination of
minimum-to-minimum rate coefficients and the diagonaliza-
tion of the transition matrix, and the average kinetic behavior
is directly obtained. Previous studies of the master equation
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have generally concentrated on the time evolution analysis of
probability flow from some specific initial population.4,5,7,8

This is a straightforward approach to study the nonequilib-
rium relaxation process, but the effects of the arbitrary initial
condition are yet to be resolved.

In this paper, we present our analysis of the time auto-
correlation function and its fluctuation spectra derived from
the master-equation transition matrix.6 This approach is effi-
cient at extracting the useful kinetics and dynamical informa-
tion of complex systems near or approaching equilibrium
without following the time evolution of some specific prop-
erty or the knowledge of proper initial population. The time
scale of the important relaxation kinetics and the correspond-
ing dynamic mechanism can be studied systematically by
inspecting the contribution of the transition matrix eigen-
modes to the fluctuation properties and the respective fluc-
tuation spectra from time autocorrelation function. The mas-
ter equation and the time autocorrelation function derived
from the transition matrix are discussed in Sec. II. The en-
ergy fluctuation spectra analysis of the time autocorrelation
function is then applied to the phase coexistence of the 13-
atom Morse cluster in Sec. III, and details of our analysis
procedure are also presented. In Sec. IV we apply this ap-
proach to the structural transition kinetics analysis of the
paradigmatic double-funnel PES 38-atom Lennard-Jones
cluster. Finally, we summarize our conclusions of this con-
tribution in Sec. V. In the following sections, all quantities
are given in reduced units unless specified explicitly.

II. MASTER EQUATION

The master equation is a loss-gain equation that de-
scribes the time evolution of the probability Pi�t� for finding
the system in a state i. In our description of PES, every

minimum on the PES corresponds to a unique state in the

© 2005 American Institute of Physics03-1
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master equation, and the saddle points determine the state-
to-state reaction rates. The basic form of the master equation
is6

dPi�t�
dt

= �
j

�kijPj�t� − kjiPi�t�� , �1�

where kij is the transition rate from state j to state i, which in
our study, is provided by the Rice-Ramsperger-Kassel-
Marcus �RRKM� theory,11

kij�T� =
kT

h

Qij
‡

Qj
exp�− Eij

‡ /kT� , �2�

where k is the Boltzmann constant, T the temperature, h the
Planck constant, Qj the partition function of the “reactant”
state �or minimum� j, Qij

‡ the partition function of the tran-
sition state linking states i and j, and Eij

‡ the energy barrier
from state j to the transition state. Under the harmonic ap-
proximation, the partition function of minimum i at tempera-
ture T is

Qi�T� =
2N!

hi
PG

�kBT��

�h�i=1

�
�i�

e−Vi/kBT, �3�

where N is the number of atoms, hi
PG is the order of the point

group of the isomer, �i is the ith vibrational frequency under
harmonic assumption, �=3N−6 is the number of vibrational
freedom of a minimum, and for saddle point �=3N−7; V is
the potential energy of the stationary point.

A transition matrix W can be set up with the components

Wij = kij − �ij �
m=1

nmin

kmi, �4�

where nmin is the total number of minima, and the diagonal
components Wii contain minus the total rate constants from
minimum i. The master equation can be rewritten in the ma-
trix form as

Ṗ�t� = WP�t� . �5�

If W is not decomposable, then the system has one

unique equilibrium state Peq for which �Ṗ�P=Peq=0, which
means the matrix W has one single zero-value eigenvalue
and its associated eigenvector corresponds to the equilibrium
probability distribution. In general, W is asymmetric, but it
can be transformed to a symmetric matrix under the detailed
balance assumption

WijPj
eq = WjiPi

eq. �6�

The transformed symmetric matrix W̃ where W̃ij

= �Pj
eq/ Pi

eq�1/2Wij share the same eigenvalues as matrix W,
and their respective normalized eigenvectors �̃�i� and ��i� are
related by ��i�=S�̃�i�, where S is the diagonal transformation
matrix S=diag�	Pi

eq
. The analytic solution to the master
equation is

Pi�t� = 	Pi
eq�

j=1

nmin

�̃i
�j�e�jt��

m=1

nmin

�̃m
�j� Pm�0�

	Pm
eq � , �7�
or it may be written in a simpler matrix form,
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P�t� = �
j=1

n

e�jt���T��j�P��0� , �8�

where n=nmin and Pi��t�= Pi�t� / Pi
eq.

Apart from the zero value, all other eigenvalues of the
master equation � j are negative. If we label the eigenvalues
in order of decreasing values, when t→	, only the �1=0
terms survive, and P�t�→Peq. The solution to the master
equation suggests that the probability relaxation to the equi-
librium shows a multiexponential behavior.

If one physical property A has a well-defined value in the
master equation for each state i, the expectation value of A
can be expressed as a weighted average as

A�t�� = �
i=1

n

AiPi�t� = �
i=1

n

Ai�
j=1

nmin

�i
�j�e�jt��

m=1

nmin

�m
�j� Pm�0�

Pm
eq � .

�9�

If A�eq=0, the time autocorrelation function ���� at equilib-
rium can be expressed as

���� = �
k=2

n

e�k���
i

n

Ai�i
�k��2

, �10�

and the equilibrium fluctuation of A is

A2�eq = ��0� = �
k=2

n ��
i=1

n

Ai�i
�k��2

. �11�

Each eigenmode k of the transition matrix has a different
contribution 
i=1

n �Ai�i
�k��2 to the total fluctuation A2�, and

the eigenvalue −�k corresponds to the jumping frequency of
the fluctuation.

The Fourier transformation S��� of the time autocorre-
lation function ���� is the fluctuation spectrum of A, and is
given as

S��� =
2

�
�

0

	

����cos����d�

=
2

�
�
k=2

n
− �k

�k
2 + �2��

i=1

n

Ai�i
�k��2

. �12�

The form of the time correlation function � shows how
the individual components of the eigenvector �i

�k� contributes
to the relaxation progress of A along the mode k. Or in the
language of PES, a larger ��i

�k�� value suggests that the
minimum i has a significant contribution to the relaxation
mode k.

The low-frequency ��→0� and high-frequency ��
→	� limits of the fluctuation spectrum S��� exhibit how
individual relaxation modes contribute to the overall long-
time and short-time correlations, respectively,

�S�����→	 = �
k=2

n

�Sk�����→	 = −
2

��2�
k=2

n

�k��
i=1

n

Ai�i
�k��2

,

�13�
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�S�����→0 = �
k=2

n

�Sk�����→0 = −
2

�
�
k=1

n−1
1

�k
��

i=1

n

Ai�i
�k��2

.

�14�

The contribution from individual modes, �k�
i=1
n Ai�i

�k��2

and 1/�k�
i=1
n Ai�i

�k��2, gives us a picture of the relative im-
portance of the mode k in the short-time and long-time fluc-
tuations.

III. PHASE COEXISTENCE OF M13 CLUSTER

In this section, we use the fluctuation spectra of the the
master-equation transition matrix to analyze the kinetics of
phase coexistence behavior of the M13 cluster, the cluster of
13 atoms bounded by pairwise Morse potentials.

The Morse potential12 is given by

V = ��
ij

e��1−rij/���e��1−rij/�� − 2� . �15�

� and � are the dimmer potential well depth and equilibrium
separation distance, respectively, and � is the dimensionless
interaction range parameter. The interaction range between
particles becomes longer as � decreases. Physically meaning-
ful � values for diatomic molecules usually range from 3 to
7,13,14 modeling the pairwise interactions from metals, which
typically have longer force ranges, to noble gases, where the
interactions are typically shorter ranged. Recently, the very
short interaction between C60 molecules has been modeled
with �=13.6.15,16

Small finite systems, such as atomic and molecular clus-
ters, exhibit some of the solidlike and liquidlike behavior of
bulk solids and liquids.17–19 Under certain conditions, many
clusters can coexist in well-defined solid- and liquid-phase-
like forms. This coexistence, unlike the sharp coexistence
curve of bulk solids and liquids, may exhibit itself over a
finite band of temperature from Tf, below which the liquid
has no stability, to Tm, above which the solid is no longer
stable. For temperatures between Tf and Tm, the potential-
energy distribution is bimodal. Previous studies have shown
that such bimodality is greatly affected by the shape of the
PES and its underlying interaction between particles.

Previous studies on the 13-atom clusters bounded by
Morse potential �M13 cluster� have demonstrated that an in-
crease of potential range can generally smooth the PES,
eliminate the number of minima, make the solidlike struc-
tures easier to approach, and make the transition between the
solid and liquid structures more frequent.5,20,21 A quantitative
description of the melting kinetics based on the master equa-
tion presented below can easily uncover the relationship be-
tween the kinetic and the dynamic behavior of the melting
transition and its underlying PES topology.

The M13 PES database is constructed using the method
proposed by Wales et al.1 The number of minima and saddle
points are listed in Table I. The database of �=10 and �
=14 are provided by Miller et al.20 Figure 1 shows the PES
disconnectivity graphs of the M13 cluster with different range
parameters. From the perspective based on the PES, at low
temperatures below Tf, a cluster resides primarily in the low-

energy minima with solidlike rigid structure�s�, but as the
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temperature rises above Tf, the system populates those
higher-energy minima with liquidlike structures, competitive
with its population of the solidlike minima, until finally at
melting temperature Tm, the minima with solidlike structure
cannot compete with the liquid form and do not have signifi-
cant dwell time. For the M13 cluster, the global minimum on
the PES has a well-defined icosahedral geometry, with the
solidlike properties under low temperatures.20

Figure 2 shows the equilibrium probability of the global
minimum of the M13 cluster with different range parameters
�. The curves show that decreasing the pairwise interaction
range �increasing �� results in a lower freezing temperature,
and a broadened coexistence range.

In the coexistence range from Tf through Tm, the heat
capacity of the cluster has values larger than solid or liquid
alone, which reflects the first-order phase-transition behavior.
The heat-capacity change of the phase transition is associated
with the configuration entropy change and the latent heat. We
can define the configurational contribution to the heat capac-
ity as

C�c =
�E2

kBT2 , �16�

TABLE I. Number of minima and saddle points on the PES of the M13

cluster at different interaction ranges �.

� 4 6 10 14

Minima 162 1 466 9 306 12 760
Saddles 1 537 22 633 37 499 54 439

FIG. 1. PES disconnectivity graph of the M13 cluster. The vertical axis is the

potential energy E in the unit of �.
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�E2 = �
i=1

nmin

Ei
2Pi

eq − ��
i=1

nmin

EiPi
eq�2

, �17�

where �E2 is the potential-energy fluctuation of the minima,
T is the temperature, and Ei and Pi

eq are the potential-energy
of minimum i and its corresponding equilibrium probability,
respectively.

Figure 3 shows the configurational heat-capacity plots of
the M13 cluster with different range parameter �. At �=4 and
6, the heat-capacity peaks are pronounced, which suggests a
large latent heat associated with the phase transition. At �
=10, the peak is broadened and the height is a bit smaller.
The peak at �=14 is much lower but broader: the total area
under the curve is much smaller, which implies that the latent
heat is much smaller but the freezing limit Tf, the lower
bound of the transition temperature region, is lowered to Tf

�0.1. It is interesting to note that the upper bounds of the
peaks are almost the same, which indicates that the melting
limit Tm�0.5, and it does not depend on the range parameter
�. When � is small, i.e., when the interaction range is long,
the energy gap is large between the global minimum or other
solidlike minima and other amorphous structured minima,
which gives a larger latent heat and higher freezing tempera-
ture.

Four temperatures were examined within the melting
temperature range between Tf and Tm by investigating the
melting configuration heat-capacity curve so that those four
values can represent the kinetic behavior from near Tf to near
Tm. The potential-energy fluctuation �E2, the long-time and

FIG. 2. Equilibrium probability of global minimum of the M13 cluster with
different range parameters: �a� �=4, �b� �=6, �c� �=10, and �d� �=14.
kBT /� and Peq are the temperature in reduced units and equilibrium prob-
ability of global minimum, respectively.

TABLE II. Eigenvalue characteristics of the transition matrix for the M13

where T1 is near the freezing temperature Tf and T4 is near the melting tem
and long-time limits of the fluctuation spectra of the energy autocorrelation

� T1 T2 T3 T4 �Ei,1
2 �Ei,2

2 �Ei,3
2 �Ei,4

2

4 0.25 0.30 0.35 0.40 0.024 2.25 4.97 3.36
6 0.25 0.30 0.35 0.40 0.35 3.22 5.23 2.95

10 0.20 0.30 0.35 0.40 0.11 2.81 3.32 2.75
14 0.10 0.20 0.30 0.40 7.6�10−3 0.34 0.69 1.06
Downloaded 07 Sep 2005 to 128.135.233.79. Redistribution subject to
short-time limits of the fluctuation spectra S0 and S	 are in-
vestigated by using the master equation, as summarized in
Table II. The total-energy fluctuation �E2 has a pattern simi-
lar to the configurational heat capacity C�c, which is what we
expect from Eq. �16�. S	 increases monotonically with tem-
perature and interaction range �decreasing ��, which reflects
an overall fast kinetics with higher temperature and longer
interaction range. The behavior of S0 looks more irregular,
which reflects the complexity of the overall PES topology as
it has significant impact on the long-time kinetics.

More striking results are the fluctuation properties calcu-
lated from individual eigenmodes of the transition matrix to
the kinetics, which are energy fluctuation ��E2� j and its
short-time fluctuation spectra S	

�j� and long-time fluctuation
spectra S0

�j�, where j is the index of the eigenmodes; 	 and 0
stand for the short-time limit �→	 and long-time limit �
→0, respectively, as denoted in Eqs. �13� and �14�. Those
quantities are calculated from

��E2� j = �
i=1

nmin

�Ei − E��2��i
�j��2, �18�

S	
�j� = − � j��E2� j , �19�

S0
�j� = −

1

� j
��E2� j , �20�

where Ei is the potential-energy of minimum i, E� is the
average potential energy, �i

�j� is the ith component of the jth
eigenvector, and � j is the corresponding eigenvalue. Equa-
tions �18�–�20� are the individual eigenmode components of
Eqs. �11�, �13�, and �14�. They reflect different contributions
to the overall thermodynamics and kinetics from different

FIG. 3. Configurational heat capacity of the M13 cluster with different range
parameters �. kBT /� and C�c /N are the temperature and heat capacity per
particle in reduced units, respectively.

r. T1–T4 are the temperatures chosen to diagonalize the transition matrix,
re Tm, �Ei

2 is the potential-energy fluctuation, and S	 and S0 are the short-
tions, as previously defined.

	,1 S	,2 S	,3 S	,4 S0,1 S0,2 S0,3 S0,4

34 16.5 76.1 147 1.14 5.09 5.30 2.03
42 8.56 44.32 85.53 0.49 2.40 1.79 0.64
10−3 1.78 6.77 13.00 21.25 18.12 4.55 1.46
10−3 9.2�10−2 1.48 6.92 2.1�10−4 31.29 1.08 0.82
cluste
peratu
func

S

1.
0.

3.2�

2.8�
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eigenmodes and minima. The analysis of these quantities are
presented below.

We first present our analysis of the M13 cluster with
range parameter �=6. The overall histogram of the eigenval-
ues of the transition matrix contains little information about
the kinetic behavior of the system as different eigenmodes
have different importance, and these are not revealed in the
plain equal-weight histogram. Figure 4 shows the eigenvalue
histogram at �=6. The majority of the modes have the eigen-
values ��100–102. The band of the eigenvalues shifts a bit
to larger values as temperature increases, and the modes with
smaller absolute eigenvalues shift faster than other modes. It
is hard to tell how the individual modes affect the thermody-
namic and kinetic quantities of the system.

Compared to the eigenvalue histogram, the plots of the
energy fluctuation spectra ��E2� j, the short-time limit of the
fluctuation S	

�j�, and the long-time limit S0
�j� have more infor-

mation about the contribution of the individual modes to the
energy fluctuation at different time scales. It is worthy to
note that both S	 and S0 plots are relatively robust to the PES
database, although a few higher-energy dead-end minima

FIG. 4. Eigenvalue histogram of the transition matrix of the M13 cluster at
�=6 at �a� T=0.25, �b� T=0.30, �c� T=0.35, and �d� T=0.40. T is the
temperature and � is the eigenvalue of the transition matrix; both are given
in reduced units.

FIG. 5. ��E2� j plot of the M13 cluster with �=6 at �a� T=0.25, �b� T

=0.30, �c� T=0.35, and �d� T=0.40.

Downloaded 07 Sep 2005 to 128.135.233.79. Redistribution subject to
may introduce noisy lines in the S0 plots, which are easily
detected, and those minima are trimmed off from the PES
database, as described in the literature.5,20

Figures 5–7 are the plots of ��E2� j, S	
�j�, and S0

�j� of M13

at �=6, respectively. The eigenmodes are highly filtered in
these plots. At the low temperature T=0.25, all three plots
have a common peak around −��1, and the typical relax-
ation time is around ��1 in reduced time units, or the order
of 10−12 s if we use the physical constants of argon atoms.
This relaxation time is much slower than the typical vibra-
tion periods of argon clusters, which are around
10−14–10−13 s, the same order as most of the relaxation
modes of the transition matrix. At the onset of the phase
coexistence T=0.25, these modes are the only modes that
have significant contribution to the energy fluctuation and its
short-time and long-time spectra, which implies that the ki-
netics and underlying dynamics are relatively simple at this
temperature. As the temperature rises to T=0.30, this peak
shifts to larger −� values, the relaxation gets faster, and the
three plots of ��E2� j, S	

�j�, and S0
�j� show different patterns.

This peak eventually disappears as temperature grows even
higher; the energy fluctuation ��E2� j is smaller, as expected

FIG. 6. S	
�j� plot of the M13 cluster with �=6 at �a� T=0.25, �b� T=0.30, �c�

T=0.35, and �d� T=0.40.

FIG. 7. S0
�j� plot of the M13 cluster with �=6 at �a� T=0.25, �b� T=0.30, �c�
T=0.35, and �d� T=0.40.
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from the total heat-capacity change. The long-time limit of
the energy fluctuation spectra S0

�j� has some modes slower
than the major peak at T=0.30, but those modes do not make
significant contribution at higher temperatures, and the total
value of S0 is smaller too, meaning that the long-time behav-
ior is not as prominent as at low temperatures. The short-
time limit of the fluctuation spectra S	

�j� shows a different
pattern: The heights of peaks are fairly small at low tempera-
tures T=0.25–0.30, at similar positions as the energy fluc-
tuation plot ��E2� j at higher temperatures T=0.35–0.40, S	

�j�

has unique features with much larger and broader peaks on
the right side of the plots, at the same position as the peak of
the nonweighted plain histogram of eigenvalues, which
means that at higher temperatures where the system is more
liquidlike, the most significant relaxation modes are more
like the typical vibrational motions, which has the same time
scales as those modes.

More detailed information of the important relaxation
modes can be obtained by analysis of the corresponding
eigenvectors, as shown in Fig. 8.

Figure 8�a� shows the eigenvector components of the
mode �79=−0.77 at T=0.25. This mode has the largest con-
tributions to all the fluctuation quantities ��E2� j, S	

�j�, and
S0

�j�. This mode corresponds to the probability flow between
the global icosahedral minimum �peak 1� and other minima
with one or two atoms out of the icosahedral outer shell
�peaks 2 and 3�, which is the prominent kinetic motion at the
low-temperature limit of the phase coexistence region. Fig-

FIG. 8. Eigenvector plots of M13 with �=6: �a� T=0.25, �79=−0.77; �b� T
=0.35, �7=−0.10; and �c� T=0.40, �1240=−56.3.
ure 8�b� shows the components of the eigenvector associated

Downloaded 07 Sep 2005 to 128.135.233.79. Redistribution subject to
with the peak pointed out in Fig. 7�c�, which has the eigen-
value of �7=−0.10 at T=0.35. This is one of the slowest
modes, with probability flows between the global minimum
and a higher-energy minimum. This mode is more like a
minimum-to-minimum transition, and the only connectivity
of the higher-energy minimum is the global minimum, linked
with a high-energy barrier. Figure 8�c� is the eigenvector plot
of the relaxation mode �1240=−56.3. This mode only appears
at higher temperatures of the phase coexistence region; it has
a larger number of minima involved, especially those corre-
sponding to liquid structures.

The fluctuation spectra of the M13 cluster at other � val-
ues are also investigated. The fluctuation spectra of �=4
looks similar to the spectra of �=6, but the relaxation modes
with larger fluctuation values have larger eigenvalues than
their �=6 counterparts, which reflects the fact that the relax-
ation processes of �=4 are faster than �=6. The relaxations
of the �=10 cluster is even slower. Figures 9–11 show the
fluctuation spectra of �2E�j�, S	

�j�, and S0
�j� at �=10. The larg-

est peaks in Figs. 9 and 11 correspond to the transition
modes of solid to low-energy liquid structures, with large
energy fluctuations. The short-time limit of the energy fluc-
tuation spectra S	

�j� at �=10 �Fig. 10� has a much broader

FIG. 9. ��E2� j plot of the M13 cluster with �=10 at �a� T=0.20, �b� T
=0.30, �c� T=0.35, and �d� T=0.40.

FIG. 10. S	
�j� plot of the M13 cluster with �=10 at �a� T=0.20, �b� T=0.30,
�c� T=0.35, and �d� T=0.40.
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range than �=4 and �=6. The multipeak feature of the S	
�j�

plots reflects the multiplicity of short-time-scale relaxation
processes and the complexity of the underlying PES. Figure
12 shows the eigenvector components of the three relaxation
modes �44, �275, and �9285 of Fig. 10�d�. Mode �44 corre-
sponds to the jumping processes between the lower-lying
energy minima and some isolated high-energy minima.
Mode �275 has a large number of minima involved with mul-
tistep processes. Relaxation mode �9285 represents the prob-
ability flow mainly between the minimum E=−36.67� and
minimum E=−35.17�. The results of �=14 follows a similar

FIG. 11. S0
�j� plot of the M13 cluster with �=10 at �a� T=0.20, �b� T=0.30,

�c� T=0.35, and �d� T=0.40.

FIG. 12. Plots of eigenvector components � of the M13 cluster at �=10,
T=0.40: �a� � plot with eigenvalue �44=−1.251, �b� � plot with eigenvalue

�275=−3.161 �c�, and � plot with eigenvalue �9285=−185.5.
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pattern as �=10, but the fluctuation values are smaller due to
the fact the the total configurational energy fluctuation with
�=14 is smaller and the phase transition at �=14 is not so
obvious.

IV. STRUCTURE TRANSITION OF LJ38 CLUSTER

The Lennard-Jones potential22 is given by

V = �
ij

4����

r
�12

− ��

r
�6� , �21�

where � is the separation of distance of dimer at zero poten-
tial energy, and � is the well depth of the dimer.

The 38-atom Lennard-Jones cluster �LJ38� has a double-
funnel potential-energy landscape.5,23,24 The PES disconnec-
tivity graph of LJ38 is shown in Fig. 13. It is practically
impossible to sample the full PES of the LJ38 cluster as the
number of stationary points on the PES is too large. Here we
primarily concentrated on the energetically low-lying region
of PES associated with the two funnels. Our database of LJ38

consists of the 6000 minima with the lowest potential energy
and the 8633 saddle points connecting those minima.5 The
global minimum of the PES lies at the bottom of the nar-
rower funnel with fcc packing, but there is another funnel
with higher energy, much larger volume in configuration
space, and icosahedrally packed geometry. The relaxation
from liquidlike structures to the global minimum of the PES
will be trapped by the icosahedral funnel because its volume
is larger and its structures are more similar to those of the
liquid. The high barrier between the two states makes the

FIG. 13. Disconnectivity graph of the LJ38 cluster. Only the lowest 5000
minima are shown in the graph. The vertical axis is the potential energy in
the unit of �.
transition between the two structures a slow process, beyond
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the typical simulation time scale of molecular dynamics. The
competition between the fcc funnel with lower energy but
smaller configuration entropy and the icosahedral bowl with
larger entropy but higher energy leads to a structural transi-
tion occurring around T�0.1 under the harmonic superposi-
tion approximation, above which the icosahedral structure
has a lower free energy than the fcc structure.5 Master-
equation analysis is a proper tool to study the slow transition.
It is possible to analyze the eigenvector components of all
the slow relaxation modes, calculate the probability flow of
the modes, and get the relaxation mode�s� corresponding to
the probability flow between the two funnels. With the aid of
the fluctuation quantities we developed, it is much easier to
find the mode, as presented below.

Figure 14 shows the eigenvalue spectrum analysis plots
of the LJ38 transition matrix at T=0.1. The nonweighted his-
togram spans the range −��10−13–102, and the peak occur-
rence value is around −��1. The largest peak in the plots of
��E2� j and S0

�j� �Figs. 14�b� and 14�d��, with the eigenvalue
of �4=−2.5�10−12, is the relaxation mode of the fcc to
icosahedron structure transition. If we use the physical con-
stants of argon atoms, the relaxation time of this mode is
�0.8 s, which is much longer than the capacity of current
MD simulations. The eigenvector components of this relax-
ation mode are shown in Fig. 15�a�. Peak 1 in plot �a� is the
global energy minimum �minimum �i� in Fig. 13� in the fcc
funnel and the peaks in group 2 �minimum �ii� in Fig. 13� are
the lowest-energy minima in the icosahedral funnel; the op-
posite signs of the two groups indicate that the probability
flows of the two funnels have opposite directions. This mode
has been discussed in detail in the literature,5 and here we
present a more straightforward approach to locate it.

Besides the prominent interfunnel transition mode dis-
cussed above, there are other important intrafunnel modes
which can be detected from the fluctuation spectra analysis.

Although there are many fast relaxation modes shown in
the nonweighted histogram, there is only one prominent peak
in the plot of the short-time limit of the fluctuation spectrum
S0

�j� with the eigenvalue �4548=−1.71; this mode is actually
the jumping mode between two local minima, �iii� and �vi� in

FIG. 14. Eigenvalue spectra of the transition matrix for the LJ38 cluster at
T=0.1: �a� non-weighted histogram, �b� energy fluctuation ��E2� j, �c� short-
time limit of energy fluctuation spectrum S	

�j�, and �d� long-time limit of
energy fluctuation spectrum S0

�j�.
Fig. 13, of the icosahedral funnel. The eigenvector compo-
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nents of this relaxation mode are presented in Fig. 15�b�. The
two main peaks in plot �b� correspond to two connected
minima in the icosahedral funnel; they have opposite direc-
tions of probability flow, as expected. The energies of the
two minima are E1=−172.235� �minimum �iii�� and E2

=−173.131� �minimum �vi��, and the saddle point between
the two minima has a low energy of Es=−172.238�, making
it a fast transition mode. It may be hard to distinguish the
two minima even at a temperature as low as T=0.10.

Careful examination of the energy fluctuation plot ��E2�
�Fig. 16� recovers a few intrafunnel transition modes. Modes
�4 and �4548 have been discussed above. Mode �97 is the
transition mode between minima �ii� and �iii�, the two
minima with the lowest energy in the icosahedral funnel in
Fig. 13. The relaxation process between the two is relatively
slow compared to most other modes ��97=−1.44�10−8�, as
the two minima are not directly connected and the relaxation
may involve a set of high-energy saddle points and minima.
Mode �183=−4.08�10−7 is the relaxation mode between
minima �ii� and �iv�; and mode �1158=−7.11�10−4 is the
relaxation mode between minima �iii� and �iv�. All the modes
discovered and the transitions between the lowest-lying
minima are inside the icosahedral funnel.

FIG. 15. Important eigenvectors of the LJ38 transition matrix. �a� fcc to
icosahedral transition mode �4=−2.5�10−12: �1� the global minimum in the
fcc funnel and �2� the lowest-energy minima in the icosahedral funnel. �b�
Fast mode in the icosahedral funnel �4548=−1.71.

FIG. 16. Logscale plot of energy fluctuation ��E2� j of the LJ38 cluster at

T=0.1.
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V. CONCLUSION

To conclude, a new approach to master-equation analysis
based on fluctuation spectra and time autocorrelation func-
tions is presented. This method does not require the knowl-
edge of an initial probability population, and kinetic behavior
toward or near the equilibrium can be easily interpreted or
predicted.

The fluctuation spectra approach filters the eigenvalue
spectra of the transition matrix such that the relevant impor-
tant eigenmodes to the fluctuation can be identified and char-
acterized. The relaxation time of this fluctuation is directly
related to the eigenvalue of the important eigenmodes. The
relationship between the relaxation process and its underly-
ing PES can be discovered by analysis of the corresponding
eigenvectors.

Fluctuation spectra analysis of the solid-liquid coexist-
ence of the M13 cluster shows that at the low-temperature
limit of the solid-liquid coexistence region, only a few relax-
ation modes associated with solidlike structure and surface-
defected structural transition are observable, but as the tem-
perature rises, the short-time and the long-time behavior of
the fluctuations diverge. There are some long-time relaxation
modes corresponding to the jumping motion between solid-
like structures and some higher-energy surface-defected or
amorphous structures, but the short-time relaxation processes
dominate at higher temperatures and long-time fluctuations
are depressed. Transitions between the fcc and icosahedral
structures of LJ38 has been a paradigmatic example of a slow
kinetic process on a complex PES. The fluctuation spectra
analysis at T=0.10 can pick this mode directly without ex-
haustive examination of the individual modes.
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APPENDIX: TIME AUTOCORRELATION FUNCTION
IN MASTER EQUATION

We begin with the solution to the master equation:

Pi�t� = �
j=1

nmin

�i
�j�e�jt��

m=1

nmin

�m
�j� Pm�0�

Pm
eq � . �A1�

We assume that the physical property we study is A
which has a well-defined value Ai in each state i of a system
with totally n discrete states, where A�eq=0, and the time
relaxation of A near equilibrium can be described by the
master equation. The probability of observing state i at time
t is Pi�t�, so P�i ,0 ; j , t�, which is our probability of observing
the system at state i at time 0 and observing state j at time t,

respectively, is
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P�i,0; j,t� = Pi�0��
k=1

n

e�kt� j
�k��i

�k�

Pi
eq , �A2�

where n=nmin is the total number of minima on the PES.
Therefore the time autocorrelation of A at equilibrium,

where Pi�0�= Pi
eq, is

���� = A�0�A�t�� = �
i,j

n

AiAjP�i,0; j,t�

= �
i,j

n

AiAjPi�0��
k=1

n

e�kt� j
�k��i

�k�

Pi
eq

= �
k=1

n

e�kt�
i

n

Ai�i
�k��

j

n

Aj� j
�k� = �

k=1

n

e�kt��
i

n

Ai�i
�k��2

= �
k=2

n

e�kt��
i

n

Ai�i
�k��2 ��

i

n

Ai�i
�n� = A�eq = 0� .

The fluctuation of A is given by

A2� = ��0� = �
k=1

n ��
i=1

n

Ai�i
�k��2

= �
k=1

n ��
i=1

n

Ai
2��i

�k��2 + �
ij

n

AiAj�i
�k�� j

�k��
= �

i,k

n

Ai
2��i

�k��2 + �
ij

n

AiAj�
k=1

n

�i
�k�� j

�k�

= �
i,k

n

Ai
2��i

�k��2 + �
ij

n

AiAj
	Pi

eqPj
eq�

k=1

n

�̃i
�k��̃ j

�k�

= �
i,k

n

Ai
2��i

�k��2 + �
ij

n

AiAj
	Pi

eqPj
eq��i, j� ,

where ��i , j�=0 when i� j and ��i , i�=1. We have

A2� = �
k=1

n

�
i=1

n

Ai
2��i

�k��2. �A3�

On the other hand, the fluctuation of A can also be writ-
ten as

A2� = �
i=1

n

Ai
2Pi

eq. �A4�

Hence we have the relation between Eqs. �A3� and �A4�:

Pi
eq = �

k=1

n

��i
�k��2. �A5�

Equation �A5� can also be derived from the normaliza-
tion of the eigenvectors �̃.
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