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Regularity in chaotic reaction paths III: Ar 6 local invariances
at the reaction bottleneck
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We recently developed a new method to extract a many-body phase-space dividing surface, across
which the transmission coefficient for the classical reaction path is unity. The example of
isomerization of a 6-atom Lennard-Jones cluster showed that the action associated with the reaction
coordinate is an approximate invariant of motion through the saddle regions, even at moderately
high energies, at which most or all the other modes are chaotic@J. Chem. Phys.105, 10838~1999!;
Phys. Chem. Chem. Phys.1, 1387~1999!#. In the present article, we propose a new algorithm to
analyze local invariances about the transition state ofN-particle Hamiltonian systems. The
approximate invariants of motion associated with a reaction coordinate in phase space densely
distribute in the sea of chaotic modes in the region of the transition state. Using projections of
distributions in only two principal coordinates, one can grasp and visualize the stable and unstable
invariant manifolds to and from a hyperbolic point of a many-body nonlinear system, like those of
the one-dimensional, integrable pendulum. This, in turn, reveals a new type of phase space
bottleneck in the region of a transition state that emerges as the total energy increases, which may
trap a reacting system in that region. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1385152#
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I. INTRODUCTION

The questions, ‘‘How does a system actually traverse
transition state?,’’ and ‘‘What kinds of trajectories carry t
system through?,’’ have been among the most intriguing s
jects in chemical reaction theories over the past sev
decades.1–14 Several findings, both theoretical15–28 and
experimental,29,30 during the last decades have shed light
mechanics of passage through the reaction bottlenecks,
on the concept of transition state, especially in systems w
only a few degrees of freedom~dof!. The recent striking
experimental studies by Lovejoyet al.,29 ‘‘see’’ this transi-
tion state via the photofragment excitation spectra for unim
lecular dissociation of highly vibrationally excited keten
These spectra revealed that the rate of this reaction is
trolled by the flux through quantized thresholds within a c
tain energy range above the barrier. The observability of
quantized thresholds in the transition state was first discu
by Chatfieldet al.31 Marcus32 pointed out that this indicate
that the transverse vibrational quantum numbers might
deed be approximate constants of motion, presumably in
saddle region. In the same period, Berry and his cowork
explored the nonuniformity of dynamical properties
Hamiltonian systems of severalN-atom clusters, withN from
3 to 13; in particular, they explored how regular and chao
behavior may vary locally with the topography of the pote
tial energy surfaces~PESs!.21–28 They revealed by analyse

a!Electronic mail: berry@uchicago.edu
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of local Liapunov functions and Kolmogorov entropies th
when systems have just enough energy to pass through
transition state, the systems’ trajectories become collima
and regularized, developing approximatelocal invariants of
motion different from those in the potential well. This occu
even though the dynamics in the potential well is fully ch
otic under these conditions. It was also shown that at hig
energies above the threshold, emerging mode–mode mi
wipes out these approximate invariants of motions even
the region of the transition state.

A widespread assumption in a common class of chem
reaction theories1–8 is the existence of a hypersurface
phase space dividing the space into reactant and produc
gions, and which one might suppose a chemical spe
crosses only once on its path to reaction. However m
formulations of chemical reaction rate theory have had
allow this probability, the ‘‘transmission coefficient,’’ to b
less than unity. Davis and Gray15 first showed that in Hamil-
tonian systems with two degrees of freedom~dof!, the tran-
sition state defined as the separatrix in the phase spac
always free from barrier recrossings, so the transmission
efficient for such systems is unity. They also showed
existence of the dynamical bottlenecks to intramolecular
ergy transfer, that is, cantori~in a two-dof system!, which
form partial barriers between irregular regions of pha
space.15–18 Zhao and Rice17 have developed a convenien
approximation for the rate expression for the intermolecu
energy transfer. However, their inference depends cruci
5 © 2001 American Institute of Physics
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on the Poincare´ section having only two dimensions. N
general theory exists yet for systems of high
dimensionality.18,33–35

Focusing on the transition state periodic orbits in t
vicinity of the unstable saddle points, Pechukas, Pollak,
Child36 first showed in the late 1970s, for two-dimension
Hamiltonian systems such as the collinear H1H2 reaction,
that, within a suitable energy range just above the saddle
reaction bottleneck over which no recrossings occur wit
minimal flux of the system, can be uniquely identified as o
periodic orbit dividing surface~PODS!, a dividing surface
S(q150). ~Here q1 is the hyperbolic normal coordinat
about the saddle point!. Moreover, as the energy increase
pairs of the PODSs appearing on each reactant and pro
side migrate outwards, toward reactant and product state,
the outermost PODS become identified as the reaction bo
neck. De Leon and his coworkers19 developed a so-called
reactive island theory; the reactive islands are the ph
space areas surrounded by the periodic orbits in the trans
state region, and reactions are interpreted as occurring a
cylindrical invariant manifolds through the islands. Fa
Wright, and Hutchinson20 also found in their two-, and three
dof models of the dissociation reaction of hydrazoic acid t
a similar cylinderlike structure emerges in the phase spac
it leaves the transition state. However these are cruci
based on the findings and the existence of~pure! periodic
orbits for all the dof, at least in the region of the transiti
states. Hence some questions remain unresolved, e.g., ‘‘
can one extract these periodic orbits from many-body
phase space?’’ and ‘‘How can the periodic orbits persis
high energies above the saddle point, where chaos may
out any of them?’’

Recently, we have developed a new method to look m
deeply into these local regularities about the transition s
of N-particle Hamiltonian systems.37–41 The crux of the
method is the application of Lie canonical perturbati
theory ~LCPT!,42–50 combined with microcanonica
molecular-dynamics~MD! simulation of a region around
saddle point. This theory constructs the nonlinear trans
mation to a hyperbolic coordinate system, which ‘‘rotat
away’’ the recrossings and nonregular behavior, especiall
the motion along the reaction coordinate. We showed by
ing isomerization reactions in a simple cluster of 6 ato
bound by pairwise Lennard-Jones potentials that, even
high energies at which the transition state becomes m
festly chaotic, at least one action associated with the reac
coordinate remains an approximate invariant of motion o
the region of the transition state. Moreover it is possible
choose a multidimensional phase-space dividing surf
through which the transmission coefficient for the classi
reaction path is unity;39 We also ‘‘visualized’’ the dividing
hypersurface in the phase space by constructing the pro
tions onto subspaces of a very few coordinates and mome
revealing how the ‘‘shape’’ of the reaction bottleneck d
pends on energy of the system and the passage vel
through the transition state, and how the complexity of
recrossings emerges over the saddle in the configurati
space.40,41 ~The dividing hypersurface migrates, dependi
on the passage velocity, just as PODS do.!
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Most applications of canonical perturbation theo
~CPT! until now have focused on the comparisons of phy
cal quantities, e.g., classical invariants of motion, energy l
els and wave functions, calculated independently by the
act and the new Hamiltonians: the latter is transformed fr
the exact one as simply as possible, so that it provides c
sical approximate constants of motion or quasi-conser
‘‘good’’ quantum numbers. However, the demanding pro
lem remains to identify those parts of space~either configu-
rational, or phase space! in which such invariants ‘‘actually’’
survive or break under the dynamics of the exact Ham
tonian, especially for many-dof systems, during the course
dynamical evolution. Beyond that is the question of how t
size of a zone of approximate separability depends on
number of dof. It can be made plausible that with more d
the more such approximate invariances develop within a
cality, e.g., for certain finite durations in specific limited r
gions.

The purposes of the present article are these:

~1! to propose a scheme of analysis of local invariants, ba
on LCPT, which may be buried in the complexity of th
original HamiltonianH(p,q), along the originalH(p,q)
dynamics, without invoking an explicit assumption of i
integrability at the order of LCPT one performed;

~2! to reveal, by applying this analysis to the isomerizati
of the Ar6 cluster, that the invariants associated with
reaction coordinate in the phase space—whose reac
trajectories are all ‘‘no-return’’ trajectories—densely di
tribute in the sea of chaotic dof in the regions of~first-
rank! transition states; and

~3! to show how the invariants locate in the original spa
(p,q) and how they depend on total energy of the syst
and the other physical quantities, and discuss its im
cation for reaction dynamics, especially for many-d
systems.

The remainder of this article is organized as follows.
Sec. II, we review our method and technique. In Sec. III,
propose a concept of the duration of regularity and the p
cedure to calculate its location and distribution. In Sec.
we describe the model and the calculations. We present
results and discussion in Sec. V. Finally, we give some c
cluding remarks in Sec. VI. A brief account of this work h
been prepared.51

II. THEORY

We first expand the full 3N-dof potential energy surface
about a chosen stationary point, i.e., minimum, saddle
higher rank saddle. By taking the zeroth-order Hamilton
H0 as a set of harmonic oscillators, which might inclu
some negatively curved modes, i.e., reactive modes, we
tablish the higher-order perturbation terms to consist of n
linear couplings expressed in arbitrary combinations of co
dinates,

H5H01 (
n51

`

enHn , ~1!

where
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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H0~p,q!5
1

2 (
j

~pj
21v j

2qj
2!5(

j 51
v j Jj5H0~J!, ~2!

(
n51

`

enHn~p,q!

5e(
j ,k,l

Cjklqjqkql ~3!

1e2 (
j ,k,l ,m

Cjklmqjqkqlqm1¯5 (
n51

enHn~J,Q!. ~4!

Here,qj andpj are thej th normal coordinate and its conju
gate momentum, respectively;v j and Cjkl , Cjklm ,... are,
respectively, the frequency of thej th mode, the coupling
coefficient amongqj , qk , andql and that amongqj , qk , ql ,
and qm , so forth.J and Q are, respectively, action and th
conjugate angle variables ofH0 , ande is the strength of the
perturbation. The frequency associated with an unstable
active mode and those of the other stable modes are
imaginary and real, respectively. In this paper, we focus o
(3N-6)-dof Hamiltonian system around a first-rank sad
with total linear and angular momenta of zero by eliminati
the six degrees of freedom of the total translational and
tational motions.39 To the regional Hamiltonians obtained b
the expansion about stationary points, we apply a metho
establish the coordinate system maximizing the local re
larities in as many degrees of freedom as possible, so-ca
Lie canonical perturbation theory~LCPT!,43–46among CPTs
the most elaborate and sophisticated theory to achieve
transformation we seek.

To begin, let us see what all the several forms of CP
provide. All the CPTs42–46,52,53 require that the canonica
transformationW of the coordinate system minimizes th
angular dependencies of the new HamiltonianH̄, thereby
making the new action variablesJ̄ as nearly constant a
possible.42 If the H̄ can be obtained altogether independe
of the angleQ̄ ~at the order of the perturbative calculatio
performed!, then

H~p,q!→
W

H̄~ p̄,q̄!5H̄~ J̄!5 (
n50

enH̄n~ J̄!, ~5!

so the new action and angle variables for thekth mode are
expressed as

dJ̄k

dt
5JG k52

]H̄~ J̄!

]Q̄k

50, ~6!

J̄k5constant, ~7!

and

QG k5
]H̄~ J̄!

] J̄k

[v̄k~ J̄!5constant, ~8!

Q̄k5v̄k~ J̄!t1bk , ~9!
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wherebk is the arbitrary initial phase factor of thekth mode.
These yield the equations of motion38 for the new coordi-
natesq̄(p,q) and momentap̄(p,q), to obey ‘‘H̄ ’’:

d2q̄k~p,q!

dt2
1v̄k

2q̄k~p,q!50 ~10!

and

p̄k~p,q!5
vk

v̄k

dq̄k~p,q!

dt
, ~11!

where v̄k@5v̄k( J̄)5v̄k(p̄,q̄)# is independent of timet be-
cause theJ̄ are constant.

The advantage of any of the several forms of CPT is
reduction of dimensionality needed to describe the Ham
tonian, for instance, Eqs.~10! and ~11! tell us that even
though the motions look quite complicated in the old co
dinate system, they could be followed as simple decoup
periodic orbits in the phase space, without any elaborate
calculation. For realistic many-body nonlinear systems, E
~10! and ~11! may not be retained through the dynamic
evolution of the system~even if the CPT calculation could
extend to the global region of the system!. This is because
the ~near-!commensurable conditions may densely distrib
in typical regions throughout the phase space, that is,
integer linear combination of frequencies that vanishes id
tically at some order,en, makes the corresponding ne
Hamiltonian diverge and destroys invariants of motion.42 If
the system satisfies any such~near-!commensurable condi
tion, the new Hamiltonian must include the correspond
angle variables to avoid divergence.48–50,53 Otherwise the
CPT calculation would have to be performed to infinite ord
in cases of near-commensurability.

Up to now, most studies based on the CPTs have focu
on transforming the new Hamiltonian itself to as simple
form as possible, to avoid divergence, and to obtain this fo
through specific CPT calculations of low finite order. A mu
more demanding usage of CPT, especially for many-bo
chemical reaction systems, should be its application as a
tector to monitor occurrence of local invariance, by use
the new actionJ̄k(p,q) and the new frequencyv̄k(p,q)
along MD trajectories obeying equations of motion of t
original HamiltonianH(p,q). That is, it is quite likely that
the more dof in the system, the more the global invaria
through the whole phase space become spoiled; neverth
the invariants of motion might survive within acertain lo-
cality, i.e., for a certain finite duration, a region of pha
space and/or in a certain limited subset of dof. The stand
resonance Hamiltonian53 constructed to avoid the nea
commensurability might also eliminate the possibility of d
tecting such a limited, approximate invariant of motion r
tained in a certain locality.

The traditional Poincare´–Von Zeipel approach42 of CPT
is based on mixed-variable generating functionsF:

q̄5
]F~ p̄,q!

]p̄
, p5

]F~ p̄,q!

]q
, ~12!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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which require functional inversion to obtain explicit formu
las for ~p,q! in terms of (p̄,q̄) and vice versa, at each orde
of the perturbative calculation. This imposes a major impe
ment to implementing higher-order perturbations and
treating systems with many degrees of freedom. With
mixed-variable generating functions, Gustavson53 developed
an elegant technique to extract the new Hamiltonian to av
a divergence by assuming that the new Hamiltonian is
pandable in normal form;52 if the complete inversion of the
variables is not required, the procedure to calculate the
Hamiltonian can be rather straightforward.

Lie canonical perturbation theories~LCPT!,43–46first de-
veloped by Hori,43,44 are superior to all the traditional meth
ods, in that no cumbersome functions of mixed variab
appear and all the terms in the series are repeating Poi
brackets. Lie transforms induce a canonical transformat
which can be regarded as a ‘‘virtual’’ time evolution of pha
space variablesz along the timee driven by a ‘‘Hamiltonian’’
W, i.e.,

dz

de
5$z,W~z!%[2LWz. ~13!

Here,$% denotes the Poisson bracket. The formal solution
be represented as

z~e!5expF2E e

LW~e8!de8Gz~0!. ~14!

It can be easily proved,43,46 for any transforms described b
the functional form of Eq.~14!, that if thez(0) are canonical,
z(e) are also canonical~and vice versa!, as the time evolu-
tion of any Hamiltonian system is regarded as a canon
transformation from canonical variables at an initial time
those at another time, withholding the structure of Ham
ton’s equations. For any functionf evaluated at ‘‘a point’’
z(0), theevolution operatorT yields a new functiong rep-
resented as a function ofz(0) ande, whose functionalvalue
is equal tof evaluated at ‘‘the other point’’z(e):

f ~z~e!!5T f~z~0!!5expF2E e

LW~z~0!;e8!de8G f ~z~0!!

5g~z~0!;e!. ~15!

The Lie transforms of an autonomous HamiltonianH to a
new HamiltonianH̄ can be brought about by

H̄~z~e!!5T21H~z~e!!5H~z~0!!, ~16!

by determining theW ~also assumed to be expandable
powers ofe asH and H̄ are! so as to make the new Hami
tonian as free from the new angle variablesQ̄ as possible, at
each order ine.43–46 Here, the inverse evolution operator
T21 brings the system dwelling at a ‘‘time’’ backward to th
past ine from that time along the dynamical evolution ofz.
yielding H(z(0)). We shall hereinafter designate the initi
values ofz, z(0), by ~p,q!, and those at timee by (p̄,q̄)
Then, one can see that Eq.~16! corresponds to a well-known
relation between the old and new Hamiltonians hold un
any canonical transformation for autonomous systems:

H̄~ p̄,q̄!5H~p,q!. ~17!
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The great advantage of LCPT in comparison w
Gustavson’s normal form53 is that, after theW is once estab-
lished through each order, the new transformed phys
quantities, e.g., new actionJ̄k , frequencyv̄k , momentum
p̄k , and coordinateq̄k of the kth mode, can be expresse
straightforwardly as functions of the original momenta a
coordinates~p,q! by using the evolution operatorT,

J̄k~p,q!5TJk~p,q!5TS pk
21vk

2qk
2

2vk
D , ~18!

v̄k~p,q!5T
]H̄

] J̄k

, ~19!

p̄k~p,q!5Tpk , ~20!

q̄k~p,q!5Tqk . ~21!

For convenience, we denote hereinafter the transform
quantities in terms of~p,q! by f̄ (p,q), e.g., notJk(p,q) but
J̄k(p,q), because we have already used the notation, e
Jk(p,q) to represent the action ofH0,

Jk~p,q!5
pk

21vk
2qk

2

2vk
5

1

2p R
E5H0~p,q!

pkdqk . ~22!

Note that the coordinates of theoriginal system$pk ,qk% are,
in other terms, regarded as the canonical variables to re
sent harmonic motions ofH0 , but $ p̄k(p,q),q̄k(p,q)% corre-
spond to the canonical variables, which represent perio
hyperbolic regular motions in the phase space for
nonlinearH(p,q) if H̄(p̄,q̄) actually exists.

For practical calculations, we apply a so-called ‘‘alg
braic quantization,’’37,48–50which replaces the cumbersom
analytical differentiation and integration calculations that a
pear in LCPT calculations carried out by computing direc
with symbolic operations based on simple Poisson brac
rules. In the present article, we analyze the above phys
quantities up to a finite, second order ine, through which no
commensurability conditions were encountered. For
ample,p̄k

i th(p,q) and q̄k
i th(p,q) have the following forms, re-

spectively,

p̄k
i th~p,q!5 (

n50

i

(
j

encj
np2nj 21qmj , ~23!

q̄k
i th~p,q!5 (

n50

i

(
j

endj
np2nj8qmj8, ~24!

where, for example,

qmj[)
l 51

M

ql
ml, ~25!

mj5(
l 51

M

ml . ~26!

Each coefficient depends on the original Hamiltonian and
order of CPT. For example,cj

n denotes the coefficient of th
j th term at then(< i )th order in p̄k

i th(p,q,) nj andmj (>0)
are arbitrary positive integers ofp,q of the j th term at the
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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n(, i )th order inp̄k
i th(p,q). The newp̄k

i th(p,q) andq̄k
i th(p,q)

maintain time reversibility. We showed in the on-lin
supplement39 the expressions through second order
p̄1(p,q) and q̄1(p,q) at saddle I, defined below, of Ar6. The
contributions of the originalp1 and q1 in p̄1

i th(p,q) and
q̄1

i th(p,q) are not necessarily large and almost all modes c
tribute to p̄1

i th(p,q) andq̄1
i th(p,q) for i>1 ~hereinafter, mode

1 denotes the reactive mode in this article!.

III. LOCAL INVARIANCE ANALYSIS

Almost all studies based on CPT so far have worked
find constants of motion or good quantum numbers by tra
forming to a new, near-integrable form, particularly by tran
forming into as a simple form as possible. In our strategy,
monitoring the fluctuations ofJ̄k(p,q) and/orv̄k(p,q) along
the original Hamiltonian dynamics, we scrutinize invar
ances of motions buried in the complexity of the origin
H(p,q) without making any explicit assumption of the int
grability of H(p,q). Thus, in contrast to the standard usa
of CPT, this monitoring-invariant procedure provides us w
a clue of which parts of space~usually, phase space rath
than configuration space! are those in which there are loc
or regional invariants of motion, which tend to persist duri
the course of dynamical evolution, e.g., during isomeri
tions, reactions or vibrational relaxations. Such surviving
vague invariancies in many-body systems occur, in gene
only for certain finite durations and in certain limited dof,
contrast to the Kolmogorov-Arnold-Moser~KAM ! tori
whose dimension is exactly equal to the total number of d

Here, we introduce a concept of ‘‘duration of regulari
~t!.’’ This is the residence time, for each mode of the syst
at each order of perturbation, for which each mode rema
in the region of its near-constant action or frequency, as
termined by a chosen bound on the fluctuationD J̄ or Dv̄. As
depicted in Fig. 1, we first transform a time series of t
variables, denoted hereinafter asx(t), to a sequence of sta
tionary points,̄ -min@i#-max@i11#-min@i12#-¯ alongx(t)
with the corresponding timest@ i #. By choosing all the pos-
sible combinations of max@i# and min@ j#, we calculate each
residencet for which x(t) traverses each fluctuation windo
Dx defined as max@i#-min@ j#. For a bundle ofx(t) one can
calculate how frequentlyx(t) traverses the region of a ce
tain fluctuation windowDx for a certaint, i.e., the residence
probability P2(Dx;t)

FIG. 1. Invariance analysis for a time-series ofx(t).
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P2~Dx;t!5
N2~Dx;t!

*dDxdtN2~Dx;t!
, ~27!

where N2(Dx;t) is the frequency of the time-evolution o
x(t) within Dx for time t. Even if two independent evolu
tions ofx(t) has a samet with a sameDx, the initial point in
time t to measuret would differ. Thus, ifx(t) is a physical
quantity such asJ̄k

i th(p(t),q(t)), the part of the phase spac
the system traverses while maintainingx(t) nearly constant
throught would differ with each initial condition. Thus, we
also calculated several distinct forms of joint probabilitie
Ph11(j1 ,j2 ,...,jh ;t) wherej i is eitherDx, x, Dx8, or x8 of
any other variablex8(t),x8/x is the short-term average o
x8(t)/x(t) for a certain periodt, say, fromt8 to t81t, e.g.,

x8[
1

t Et8

t81t
dtx8~ t !. ~28!

To calculate the statistics and sample the regions of the ti
series efficiently, we chose all the possible combinations
max@i# and min@ j# calculated for everyx(t),x8(t),..., if the
j i include more than one fluctuation bound,Dx,Dx8,..., by
transforming each to each sequence of the set of statio
points to sample each boundDx,Dx8,... . In practice, the
integrals appeared in calculation, e.g., Eq.~27!, are replaced
as the summation for a calculated set of$j i% and t. For
example, as theh52 joint probabilities, P3(D J̄k

i th ,p1 ;t)
tells us how the passage velocity through the saddle,p1 ,
would influence the finite time~t! quasi-invariant of action
along modek at i th order; andP3(D J̄1

2nd,Dv̄1
2nd;t), how the

system resides in both the quasi-invariants of action and
quency during the same time-evolution, say, fromt8 to t8
1t with the same periodt, along the reactive mode 1
at second order; as theh53 joint probabilities,
P4(D J̄1

2nd,Dv̄1
2nd,p1 ;t) tells us how thet-residence of the

system in both the quasi-invariant ofJ̄1
2nd(p,q) and

v̄1
2nd(p,q) is affected by the passage velocity through t

saddle; andP4(D J̄1
2nd,p1 ,q1 ;t), how the finite time~t!

quasi-invariant action J̄1
2nd(p,q) distributes in two-

dimensional plane (p1 ,q1).
We also calculated the integrated quantities ofPh11 over

all the calculatedt, P̄h11(j1 ,j2 ...,jh),

P̄h11~j1 ,j2 ,...,jh!5E dtPh11~j1 ,j2 ,...,jh ;t!. ~29!

We useJ̄k
i th(p(t),q(t)), v̄k

i th(p(t),q(t)), p̄k
i th(p(t),q(t)),

andq̄k
i th(p(t),q(t)) asx(t),x8(t)... andcalculate, in Sec. IV,

several such joint probabilities in the region of the transiti
states, by using 10 000 ‘‘well-saddle-well’’ trajectories ge
erated microcanonically. The analyses of local frequenc
were done only at second order because ofv̄k

i th(p,q)5vk

5constant fori 50, and 1.

IV. MODEL AND CALCULATIONS

We have applied this method to saddle crossing dyna
ics in Ar6, represented by the sum of pairwise Lennard-Jo
potentials. This should be regarded as an illustrative vehi
with no peculiar or specific mode~s!. This system encounter
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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rather well representable situations in the regions of its tr
sition states, compared with some chemical bond break
and-forming reactions.37,38We assign laboratory scales of e
ergy and length appropriate for argon, i.e.,«5121 K ands
53.4 Å with the atomic massm539.948 amu, and the tota
linear and angular momenta are set to zero.39 This is the
smallest inert gas cluster in which no saddle dynamics m
regular than the dynamics within the local wells was
vealed by the localK entropy analysis.25 This cluster has two
kinds of potential energy minima. The global minimum co
responds to an octahedral arrangement of the atoms~OCT!,
with energyE5212.712«, and the other, higher minimum
to a trigonal bipyramid structure of five atoms, capped
one face by the sixth atom~CTBP!, with energy E
5212.303«. There are two distinct kinds of first-ran
saddles. One, saddle I, at energyE5212.079« joins the
OCT and the CTBP minima. The other higher saddle, sad
II, at energyE5211.630«, joins two permutationally dis-
tinct CTBP structures. Saddle II is slightly flatter than t
lower saddle. See also the potential energy profile prese
in Fig. 1 of our previous paper.39 In the present study we
mainly analyze the invariants of motion during the course
isomerization reaction, OCT
CTBP, at total energiesE
50.1, 0.5, and 1.0« above the saddle point energy at sad
I, i.e., 16~45!, 79~223!, and 158~446!% of the barrier height
of OCT→CTBP (OCT←CTBP!. The computational recipe
for constructing the 3N-6(512)-dof regional Hamiltonian
was described elsewhere.39 The three-, and four-body cou
plings terms for both the saddles are determined by introd
ing an appropriate cut-off value; the total number of terms
106 three-, and 365 four-body couplings for saddle I.

Throughout this paper the parabolic barrier, the react
coordinate in the original~p,q! space~and in the new (p̄,q̄)
space! is denoted asq1(q̄1) and the other bath coordinate
as q2 ,q3 ,...,q12(q̄2 ,q̄3 ,...,q̄12) in order of increasing fre-
quency,v2<v3 ,...,<v12(v̄2<v̄3 ,...,<v̄12). The units of
energy, coordinate-space distance, momentum, action,
quency, temperature, mass and time are, respectively«,
m1/2s, m1/2sps21, Kps, ps21, K, argon atomic mass and p
unless otherwise noted.

For analyses of the infrequent saddle crossings, we
ployed a modified Keck–Anderson method39 to generate the
microcanonical ensemble of well-saddle-well trajectori
We generated 10 000 well-saddle-well trajectories for b
the saddles, which were found to be enough to yield stat
cal convergence in calculating the transmission coefficie
in terms of many-body phase-space dividing hypersurfa
S(q̄1

i th(p,q)50) (i 50,1,2) atE50.1, 0.5, 1.0« above both
the saddles. For the trajectory calculations we used a fou
order Runge-Kutta method with adaptive step-size contro54

The total energies in our MD calculations were conserv
within 6131026«.

V. RESULTS AND DISCUSSIONS

First, let us look into how long the system resides in t
near-invariants of action at each order during the course
the reactions. To begin, curves ofP2(D J̄1

i th ;t) in the region
of saddle I are shown in Fig. 2, at each order, withE
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50.1«. The higher the order of the LCPT calculation pe
formed, the longer is the residence time of the near-invari
as measured by small fluctuations in the actions. As see
the residence probability of the system remaining the ne
invariant of action of the reactive mode,D J̄1 , almost all of
the 10 000 trajectories going through saddle I actually exh
this variable as a near-invariant within a very narrow zo
;D J̄1

2nd<0.05, at the second order.~Remember that the in
dividual trajectories have different values of the actio
J̄1

2nd(p,q), depending on the incidentp andq going into the
saddle region.!

Then how does the system reside in each near-invar
of action associated with each mode, during the course of
reactions? Figure 3 shows the residence probabilities wi
a small region of the fluctuation of each action at each or
at E50.1«, for saddle I. Here, the width of the action fluc
tuationD J̄ was taken to beD J̄<0.05; well-saddle-well tra-
jectories, in all the most, reside in such a regime
D J̄1

2nd(p,q) along the reactive mode, at 0.1«, where all the
recrossing trajectories were rotated into single-crossing
jectories, in terms of the phase-space dividing hypersurf
S(q̄1

2nd(p,q)50).39As only a small fluctuation in each actio
was allowed, the higher the order of the LCPT, the mo
almost all the actions become well-conserved along both
active and nonreactive modes, i.e., at low energies, all tra
tories become quasi-regular in almost of all dof, in the sad
region. In the zeroth order approximation~remember that the

FIG. 2. The residence probabilities in the near-invariant ofi th order action

of reactive mode 1,P2(D J̄1
i th ;t), in the region of saddle I atE50.1«; ~a!

zeroth,~b! first, and~c! second order. The contours are drawn in the unit

1/10 000 from 0 to 30/10 000, and the units ofD J̄1
i th for mode 1 must be

multiplied by a factor of an imaginary numberi, throughout the following
figures.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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zeroth order means the trace of the functions of normal
ordinates, in this case, action ofH0 , along the original
Hamiltonian dynamics!, the escape rate of the system fro
the near-invariant of action, i.e., the inverse of reside
time, is fastest on average along the fastest nonreactive m
12, while the higher order calculation brings this mode do
to make its fluctuations slower and more comparable to th
of the other nonreactive modes.

How does the period of near-invariance of each mod
action change as the energy of the system increases?
ition suggests, on the basis of behavior in the vicinity
potential energy minima, that the nonlinearities of the P
could not be considered as a ‘‘sufficiently weak perturb
tion,’’ as the energy of the system increases, and that
number of approximate local invariants should beco
smaller and smaller, going to zero at sufficiently high ener
~This is actually a statement of the so-called ‘‘local equil
rium assumption’’ that most reaction rate theories incor
rate. This assumption is believed to hold at least for ma
dof systems: The reaction system ergodically moves ab
exploring the entire phase space domain of the reactant
fore crossing the transition state.! Figure 4 atE50.5«, 79%
above of the saddle point energy from the OCT minimu
shows that the actions of nonreactive modes exhibit suc
sively more variance and shorter durations of regularity
the calculation is refined to higher order. However, the hig

FIG. 3. The residence probabilities in the near-invariants of actions wh

fluctuationsD J̄ are within a small bound 0.05 at each order and each m
in the region of saddle I atE50.1«. The bold-solid line denotes reactiv
mode 1, and the other are the nonreactive; dashed,L, s, h, dotted, long-
dashed,n, 3, 1, dot–dashed, and solid lines denote 2, 3, 4, 5, 6, 7, 8, 9,
11, and 12, respectively.
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the order of LCPT, the more the action in the mode of t
reaction coordinateJ̄1 stands out in bold relief as a nea
constant of motion for longer and longer times. Despite
higher energy, the system retains its nearly invari
reactive-mode action through the saddle region with a r
dence probability within this fluctuation very similar to th
at E50.1«. At much higher energy,;1.0«, the probability
of the system retaining the invariants of action becom
much less even along the reaction coordinate at the sec
order, with an escape rate from that fluctuation band of
action much larger than those rates at lower energies.

In turn, how does the system reveal the degree of inv
ance of the frequencyv̄k(p,q) during the course of reac
tions? Figures 5 and 6 show, respectively, how long the
quency v̄k

2nd(p,q) dwells in three distinct regions of th
fluctuation in the second-order frequency of each mo
through saddle I, atE50.1«, and 0.5«. The three distinct
regions were taken to beDv̄<h, h<Dv̄<2h, and 2h
<Dv̄<3h, whereh was such a fluctuation bound that th
system reside withinDv̄1([Duv̄1u)<h for the ~imaginary!
frequency of reactive mode 1, atE50.1«. As Fig. 5 shows,
most degrees of freedom exhibit almost complete ne
invariance of frequencyv̄k

2nd(p,q), within Dv̄<0.02, atE
50.1«, just as in Fig. 3, although the frequencies for som
modes, i.e., 2, 4, and 12, fluctuate a bit more than the oth
At 0.5«, the frequencies fluctuate more@see Figs. 6~b! and
6~c!# and a clear distinction appears among the freque
fluctuations in different modes. However, the one varia

se

e

,

FIG. 4. The residence probabilities in the near-invariants of actions wh

fluctuationsD J̄ are within a small bound 0.05, at each order and each mo
in the region of saddle I atE50.5«. The meaning of each symbol is th
same as in Fig. 3.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



c
n

ta
-

th
d

-

or
y
,

o

p
s

he

gion
stly
lin-
ion.
n.
ties,

iz-

the

rd

rder

of

at

g

4112 J. Chem. Phys., Vol. 115, No. 9, 1 September 2001 T. Komatsuzaki and R. S. Berry
that stands out among all the rest is, again, the reaction
ordinateq̄1

2nd, whose frequency becomes more nearly co
stant than all the rest. At much higher energy,;1.0«, the
fluctuations of the frequency alongq̄1

2nd become more like
those of the rest, and the residence probability distribution
the near-invariant band of the frequency develops a long
toward largeDv̄1 , like those distributions for the nonreac
tive modes.

Next, how do the invariances of both the action and
frequency correlate with each other along the reactive mo
The joint probabilityP̄3(D J̄1

2nd,Dv̄1
2nd) tells us how the sys-

tem dwells in the regions ofboth the near-invariants of ac
tion and of frequency associated withq̄1

2nd for the same
times. An example is that of Fig. 7, constructed atE50.5«
for passage over saddle I. Here, we found that, except f
very smallt, the topological shape of the joint probabilit
distributions of P3 we scrutinized in this article
P3(D J̄1

2nd,Dv̄1
2nd;t) and the otherP3 , are less influenced in

t, and look similar as the correspondingP̄3 integrated overt.
The figure shows that the smaller the fluctuation
J̄1

2nd(p,q), the smaller is the fluctuation ofv̄1
2nd(p,q). Figure

8 shows how the passage velocityup1u through the transition
state influences to this; very slow passages manifestly s
the invariance ofv̄1

2nd(p,q) even while the action remains a
an invariant of motion. In contrast, fast passages tend
make v̄1

2nd(p,q) remain rather constant. We expect that t

FIG. 5. The residence probabilities in the near-invariants of second-o
frequenciesv̄k

2nd(p,q) of each mode, whose fluctuationsDv are; ~a! Dv̄
<0.02, ~b! 0.02<Dv̄<0.04, and~c! 0.04<Dv̄<0.06, in the region of
saddle I atE50.1«. The units ofDv̄1

2nd for mode 1 must be multiplied by
a factor of an imaginary numberi throughout the following figures. The
meaning of each symbol is the same as in Fig. 3.
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slower the system passes through the transition state re
at moderately high energies, where the system is manife
chaotic, the more the system responds to significant non
earities of the PES due to its longer residence in that reg
These nonlinearities would spoil any invariant of motio
This is, in fact, not the case because one of those quanti
action J̄1

2nd(p,q), remains as the near-invariant.
Let us look more deeply into this question by scrutin

ing the other joint probability distributions atE50.5« over
saddle I. Figures 9 and 10 tell us where the system finds
near-invariant of actionJ̄1

2nd(p,q) and that of frequency

er

FIG. 6. The residence probabilities in the near-invariants of second-o
frequenciesv̄k

2nd(p,q) of each mode, whose fluctuationsDv are; ~a! Dv̄
<0.02, ~b! 0.02<Dv̄<0.04, and~c! 0.04<Dv̄<0.06, in the region of
saddle I atE50.5«. The symbols are the same as in Fig. 5.

FIG. 7. The joint probability of residing in both the near-invariants

second-order actionJ̄1
2nd(p,q) and second-order frequencyv̄1

2nd(p,q) of re-

active mode 1,P̄3(D J̄1
2nd,Dv̄1

2nd), while the system is crossing saddle I

E50.5«. Here, P̄3(D J̄1
2nd,Dv̄1

2nd) is integrated the correspondin

P3(D J̄1
2nd,Dv̄1

2nd;t) over t ~see the text in detail!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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v̄1
2nd(p,q) in terms of the reaction coordinateq̄1

2nd(p,q), and
the conjugate momentump̄1

2nd(p,q). As the figures show, the
joint probabilitiesP̄3(D J̄1

2nd,p̄1
2nd) andP̄3(Dv̄1

2nd,p̄1
2nd) indi-

cate that the system establishes its near-invariant action,
D J̄<0.05, as the system slows through the transition s
region, while, on the contrary, that slow transit of the syst
through the saddle does not establish the frequency as a
invariant, for example to have varianceDv̄1

2nd<0.02, in the
local frequency space@see Figs. 9~a! and 10~a!#. In the re-
gions further fromp̄1

2nd'0 in the distributions, the probabili
ties increase for the system to exhibit large fluctuations
both J̄1

2nd(p,q) andv̄1
2nd(p,q). This is simply due to the fac

that, along the negatively curved reaction coordinate, the
ther the system moves from the bottleneck region ofq̄1

i th

'0 (i>0), the larger is theu p̄1
i thu, thus yielding a large

nonlinear effect associated withq̄1
i th . ~This makes it difficult

to treat the dynamics well away from the saddle via a fin
perturbation calculation.! Note, however, that the nea
invariance ofv̄1

2nd(p,q) in its region of very small fluctua-
tions is well established even whenu p̄1

2ndu is large, compared
with that of J̄1

2nd(p,q) @see Figs. 9~a! and 10~a!#. The prob-
ability distributions in the reaction coordinateq̄1

2nd(p,q), as
shown in Figs. 9~b! and 10~b!, imply that the well-conserved
invariant in both the action and the frequency is located m
in the vicinity of q̄1

2nd>0 than in more distant regions. W
found that the qualitative shapes of these joint probabi

FIG. 8. The joint probability of residing in both the near-invariants
J̄1

2nd(p,q) and v̄1
2nd(p,q) as a function of the absolute value of passa

velocity p1 ,P̄4(D J̄1
2nd,Dv̄1

2nd,up1u), whose up1u are; ~a! up1u<0.02, ~b!
0.02<up1u<0.04, and ~c! 0.04<up1u<0.06, in the region of saddle
at E50.5«.
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distributions in terms ofp̄1
2nd(p,q) and q̄1

2nd(p,q) look simi-
lar to those ofp1 and q1 , except that significantly more o
probabilities for bothD J̄1

2nd andDv̄1
2nd, are localized around

p1'q1'0 as sharp peaks in their near-invariant regimes
comparison withp̄1

2nd(p,q)'q̄1
2nd(p,q)'0.

What mechanics underlies the clear distinction betwe
invariances of actionJ̄1

2nd(p,q) and of frequencyv̄1
2nd(p,q)

FIG. 9. The joint probabilities of how the system possessesp̄1
2nd(p,q) and

q̄1
2nd(p,q) while residing in the near-invariant of second-order acti

J̄1
2nd(p,q) in the region of saddle I atE50.5«; ~a! P̄3(D J̄1

2nd,p̄1
2nd), ~b!

P̄3(D J̄1
2nd,q̄1

2nd).

FIG. 10. The joint probabilities of how the system possessesp̄1
2nd(p,q) and

q̄1
2nd(p,q) while residing in the near-invariant of second-order frequen

v̄1
2nd(p,q) in the region of saddle I atE50.5«; ~a! P̄3(Dv̄1

2nd,p̄1
2nd), ~b!

P̄3(Dv̄1
2nd,q̄1

2nd).
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along the reaction coordinateq̄1
i th(p,q)? Especially, why do

these near-invariances depend on the velocity of pas
through the transition state?~We found that no such clea
distinction appears at low energy, e.g.,E50.1«.! The answer
is this: The invariance of action associated with the reac
coordinateq̄1(p,q) arises from the generic feature inhere
in the region of~first-rank! saddle at the transition state, i
respective of the system; no arbitrary combination of mo
can satisfy commensurable conditions to make an unst
mode mix with modes stable in that region, because
frequencyv1 is pure-imaginary along the reactive dof an
all the rest are real in the nonreactive dof.39,40 On the con-
trary, the invariance of the local frequencyv̄1(p,q) might
arise from ‘‘adiabaticity’’ of the passage through the tran
tion state region, that is, passage fast enough to make
influence of the~individual! variations of the composite ac
tions J̄k in v̄1( J̄(p,q)) less important if the system is not i
the quasi-regular regime where all or almost of all the acti
are ‘‘good’’ approximate invariants. We might still expe
any nonconstancy ofv̄1 to leave the separability ofq̄1 as
unaffected asJ̄1 in the transition state. The reason is that
pass through a dividing surface from the one side to
other, the crossing trajectories typically require, at most, o
a half period of the reactive hyperbolic orbit;p/v̄1 ; except
through very flat saddles, the fluctuation ofv̄1 should have
little influence during such short time intervals, as sho
in Fig. 11, v̄1

2nd exhibits near-constant aroundv̄1
0th(5v1

521.477i ) with a fluctuation ;60.2i , at 0.5« through
saddle I.

Local invariant of action J̄ 1„p,q … in the original space
and its energy dependence

How and where does the invariant of action distribute
the original phase space~p, q! and how is this regularity
ruined in the region of the transition state with sufficien
high total energy? First, to show how the system traver

FIG. 11. The residence probabilities of the second-order frequen

v̄k
2nd(p,q),P̄2(v̄k

2nd), in the region of saddle I atE50.5«, showing how the
system possesses the near-constants ofv̄k

2nd(p,q). The meaning of each
symbol is the same as in Fig. 3, and the unit ofv̄1

2nd must be multiplied by
a factor of2i.
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the transition state region before being captured in eithe
the stable states, we examine the probability distribution
excursion lengthsDq1

ex, defined55 as the maximum distanc
attained in the coordinateq1 away from the barrier top,q1

50, before returning to it; i.e., how extended is the region
recrossings? We explore this atE50.1, 0.5, and 1.0« through
saddle I. Figure 12 shows that the more energy in the sys
the longer are the returning excursions from the barrier t
The system more frequently traverses the minus side than
plus side ofq1 in the unsymmetrical saddle I before th
system eventually goes into either of the stable states.
visualized before,40,41 this is because the real, many-bod
phase space reaction bottleneck, defined asS(q̄1

2nd(p,q)
50), is located in a region removed fromq150 to the mi-
nus ofq1 toward the global minimum OCT.

Now let us turn to the local invariant regime in the orig
nal space (p1 ,q1), and examineP4(D J̄1

2nd,p1 ,q1 ;t). Figure
13 shows how frequently the system passes through sad
in the (p1 ,q1) plane, atE50.1, 0.5, and 1.0«, while it re-
sides in the zone of its near-invariant action, ca.D J̄1

2nd

<0.05, for a durationt>0.5.56 As described in our shor
report related to this article,51 a large amount of cone-typ
invariant distributions occur in the hyperplane of the non
active dofs, e.g., (p̄2

2nd,q̄2
2nd), at just slightly above the

threshold,;0.1«. As the energy increases, say,>0.5«, such
regions totally disappear. As seen in Fig. 13, in the reac
plane, the more the energy increases, the more the zon
invariant action shrinks toward the regime whereq1>p1

>0 and the more the population of systems occupying
zone of near-invariance of action decreases~see the vertical
axis!. However, even atE50.5«, one can still see a much
more significant amount of local regularity in the reacti
space than in the nonreactive space. Much higher ene
;E51.0«, seemingly washes out the regularity even alo
the reaction mode, shrinking it toward the origin in that c
ordinate. Nonetheless, rather ‘‘long-lived’’ regularitie
around the origin,p1>q1>0, emerge as the energy in

esFIG. 12. The excursion length probabilities atE50.1, 0.5, and 1.0« in the
region of saddle I~see the text in detail!. The bold-solid, circle, and squar
lines denote 0.1, 0.5, and 1.0«, respectively.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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creases, even surviving to 1.0«. This is irrespective of the
higher incident passage velocityp1 inferred from the higher
energy, going through the reaction bottleneck. Such a ‘‘lo
lived’’ regularity could not be observed in the quasi-regu
region, 0.1«.

Let us now interpret all the findings we have shown
far, in terms of the extent these are related to kinetics
reaction dynamics. The heavy, localized, and persis
weight of the distribution of near-invariants ofJ̄1(p,q) and
its associatedv̄1(p,q), up to moderately high energies,~see
Figs. 2–6!, implies thatp̄1(p,q) and q̄1(p,q) are approxi-
mately decoupled from the other modes, and represent
local dynamics analytically. These observations strongly s
port the existence of a multidimensional dividing hypers
face in the phase space, defined by the condition that
reactive coordinate in the transformed coordinates is z
and that this surface is free from recrossing problems.39 The
higher the energy of the system, the more distant are
returns of the recrossing trajectories from the barrier top~be-
fore going into either the reactant or product state! ~see Fig.
12! while the more the region of the local-invariant of actio
J̄1(p,q) shrinks ~see Fig. 13!. That is, the more the tota
energy increases, the more the broadening of the excur
regime competes with the shrinkage of the region of lo

FIG. 13. The joint probabilities of the system residing in the near-invar

of the second-order actionJ̄1
2nd(p,q) whose fluctuationsD J̄ are within a

small bound 0.05 and whose durationt is larger than 0.5, projected onto th
two-dimensional (p1 ,q1) plane, at;~a! E50.1«, ~b! E50.5«, ~c! E51.0«
in the region of saddle I.
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invariance of the action, in which the reaction coordinateq̄1

decouples from the others. The outcome of this competit
is retainingq̄1(p,q) as a ‘‘true reaction path’’ along which
the recrossing problem never appears essential.

Next, what is the implication of the sharpness of t

distribution of the local invariant of actionJ̄1
2nd(p,q) in the

context of reaction dynamics? This spike appears and
sists in the region ofp1>q1>0, with an increase of the tota
energy of the system. Note that such a sharp spike around
origin can also be observed by the projection onto
( p̄1

2nd,q̄1
2nd) plane,51 and, even irrespective of the local in

variance, in an integrated distribution ofP̄4(D J̄1
2nd,p1 ,q1)

overD J̄1
2nd. This implies that the system is ‘‘trapped’’ in th

nonreactive space for a significant period during the cou
of the reaction. The appearance of such trapped trajecto
at high energies implies that, with increasing total energy
the system, another type of bottleneck emerges in the en
flow between the reactive modeq̄1(p,q) and the others. It
would be almost impossible to distinguish between two p
sible origins this long-lived trapping phenomena, either~1!
the space in which one views these, i.e., the order of the C
calculation, since the trapping in phase spa
@ p̄1

`th(p,q),q̄1
`th(p,q)# might be rotated away as no-trappin

trajectories, or~2! the shrinkage of the convergence radius
CPT~even if an infinite-order CPT would be possible! within
which the couplings among the reactive and nonreactive d
are very weak. The reactive dofq̄1

i th(p,q) becomes coupled
as the energy of the system increases, with the other no
active dofs, not via ‘‘resonances,’’ but via straightforwa
nonlinear couplings, either from the higher orders>O(e i 11)
above the order at which one performed the CPT, or fr
those nonlinearities originating outside of the converge
radius. These kinds of trapping phenomena in the nonre
tive space are, whatever the reason, quite generic irrespe
of the system and the order of CPT we used, and should
the fundamental causes spoiling the invariance of freque
v̄1 even along the reactive coordinateq̄1 , as observed while
u p̄1

2nd(p,q)u is small @see Fig. 10~a!#. That is, long intervals
with much energy stored in the nonreactive dofs could m
the fluctuations of action of those modes affect the ne

invariance of v̄1( J̄). Note here that, this suggests
previously-unrecognized type of phase space bottlenec
the energy flows among reactive dof and nonreactive dofs
moderate to high energies, such bottlenecks may break
simplistic picture, ballistic or diffusive, of the system’s pa
sage through transition states, and even the microcanon
statistics~in the sense of requiring pathologically long tim
intervals to establish those statistics!, though microcanonica
statistics may be established quickly outside the region of
transition state.

At energies just slightly above the threshold,;0.1«, a
similar sharp spike was detected aroundp̄1

2nd(p,q)
>q̄1

2nd(p,q)>0, but with much shorter residence time~t
!0.3 with the same fluctuation in its action!. This finding
implies that the original Hamiltonian can not be transform
to an exact, integrable Hamiltonian at second order of LC
in the real situation atE50.1«. However, as shown in Fig
3, almost of all the actions in the nonreactive space are

t
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tained approximately as ‘‘good’’ invariants at that energ
The shorter trapping period, i.e., the fast energy flow
tween the nonreactive subspace and the reactive mode,
gests that trapping is brief in the apparently near-integra
part of the nonreactive space, and has less influence on
kinetics than the nonreactive modes in the chaotic sub
Remember that the standard Rice–Ramsperger–Kas
Marcus ~RRKM! theory4–6 postulates that the greater th
number of coupled dof, the slower is the energy concen
tion into a specific mode.

We also want to point out here what else the distrib
tions show us, besides the sharp peak around its origin
P4(D J̄1

2nd,p1 ,q1 ;t) and P4(D J̄1
2nd,p̄1

2nd,q̄1
2nd;t) ~Fig. 5 in

our short report51!. In particular, the latter projections ont
the new coordinateq̄1

2nd(p,q) and its conjugate momentum
p̄1

2nd(p,q) clearly form an ‘‘X’’-character in the two-
dimensional contour maps at all the three energies, jus
stable and unstable manifolds to and from a hyperbolic p
of a one-dimensional pendulum do. The projections onto
original space (p1 ,q1) form rather a vague ‘‘X’’ only at just
slightly above the threshold,;0.1«. The reduction of dimen-
sionality in the context of reaction dynamics has been on
the most outstanding subjects, e.g., for the control theor
chemical reaction dynamics.57 This indicates that, withou
any ~explicit! assumption of the separation of time scale
sociated with individual modes of the system, one can
tract and visualize the stable, and unstable invariant m
folds, at least in the region of the transition state, along
decoupled reactive coordinateq̄1(p,q) in the phase space.

VI. CONCLUDING REMARKS

We proposed the analyses of the local invariants in tr
sition state regions via LCPT along the dynamics of
original HamiltonianH(p,q). In the present article, we hav
studied the invariances of local climb-and-go-through d
namics in the vicinity of the transition state. The results
this investigation provide a foundation for our previo
conjecture,39–41the existence of at least three distinct ener
ranges of dynamical behavior in the vicinities of~first-rank!
transition states. These ranges are associated with the in
ants of motion along the reactive coordinateq̄1(p,q) in the
phase space. This is, as Hernandez and Miller pointed o58

because any arbitrary combination of modes cannot sa
commensurability conditions to make an unstable mode
with modes stable in that region. Thus, this feature is gen
for ~first-rank! transition states irrespective of the syste
Related to this, our approach provides us with a new,
touched, problem, e.g., what is the role of resonance in
imaginary v-plane for the bifurcation? This is one of th
most exciting questions, especially for relaxation dynam
on a rugged PES, if the system finds higher-rank sadd
which may be densely distributed in the regions of high p
tential energies, and would pass through such complica
regions at least as frequently as through the lowest re
first-rank transition states. This will require going back to t
fundamental question of what the transition state is, i
whether a dividing hypersurface could still exist or be defi
able, in terms of separating the space of the system
Downloaded 27 Sep 2001 to 150.244.37.46. Redistribution subject to A
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regions identifiable with individual stable states. The ne
forthcoming problem, inherent to the standard CPT so far
determining how one can extend CPT to a global region
nonstationary points removed from the unstable fixed poi
A recent development by Sugny and Joyeux59 on selecting
good zeroth-order Hamiltonians for floppy molecules, mig
be one of the candidates to address this problem.

In the present article, we focused mainly on the appro
mate invariants of motion associated with the reaction co
dinateq̄1 and its ‘‘statistical’’ properties as expressed by joi
probability distributions. The results strongly support the u
of the concept of single, nearly separable reactive degree
freedom in the system’s phase space, degrees of freedom
are as free as possible from coupling to all the rest of
degrees of freedom. On the other hand, such statistical an
ses with no other analytical tools would spoil the possibil
of detecting the dynamical nonuniformity15–18buried among
‘‘nonreactive’’ dofs, which should become more crucial
the system size decreases. As yet, there is no general an
as to whether a dynamical bottleneck even exists in the
actant phase space domain for large systems, say,.10 dof.
Along this direction, although we only showed how the ‘‘in
variant’’ of frequency arises, varying the ratios of frequenc
v̄k among the modes should shed light on what kinds
energy flows take place amongq̄k(p,q) space.60–62 Obvi-
ously, the more the dof, the more possible combinatio
emerge to make the system complicated.

Besides the recrossing problem, the remaining ambig
in many chemical reaction theories is the assumption of lo
vibrational equilibrium: In a strong form, this becomes t
assumption that the reactant and the system in the trans
state move ergodically, exploring all the phase space of
reactant domain before crossing the transition state.~In a
weaker form, one assumes only that the vibrational energ
equipartitioned in the reactant and in the transition sta!
One possible diagnosis to look deeply into this question
many-dof systems would be to execute the backward tra
tory calculation, starting on the phase-space dividing hyp
surfaceS(q̄1(p,q)50), sampled from the microcanonica
ensemble. If the system exhibits an invariant of motion fo
certain time in the reactant phase space, that is, if the sys
is trapped in a certain limited region for some period, th
analysis should tell us how the local-equilibrium assumpt
is violated in the reaction. The backward calculations in
ated with large momentap̄1(p,q) on the LCPT dividing hy-
persurface, i.e., the bundle of the fast transitions from
reactant to product if one inverts the time, would reveal h
any mode-specific nature of a reaction relates with the lo
topography of the phase space in the reactant state. W
these, we have reviewed some of the open subjects tha
main ahead in statistical theories of many-dof systems.
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