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We recently developed a new method to extract a many-body phase-space dividing surface, across
which the transmission coefficient for the classical reaction path is unity. The example of
isomerization of a 6-atom Lennard-Jones cluster showed that the action associated with the reaction
coordinate is an approximate invariant of motion through the saddle regions, even at moderately
high energies, at which most or all the other modes are chgbtichem. Physl05 10838(1999;

Phys. Chem. Chem. Phys, 1387(1999]. In the present article, we propose a new algorithm to
analyze local invariances about the transition stateNgparticle Hamiltonian systems. The
approximate invariants of motion associated with a reaction coordinate in phase space densely
distribute in the sea of chaotic modes in the region of the transition state. Using projections of
distributions in only two principal coordinates, one can grasp and visualize the stable and unstable
invariant manifolds to and from a hyperbolic point of a many-body nonlinear system, like those of
the one-dimensional, integrable pendulum. This, in turn, reveals a new type of phase space
bottleneck in the region of a transition state that emerges as the total energy increases, which may
trap a reacting system in that region. ZD01 American Institute of Physics.

[DOI: 10.1063/1.1385152

I. INTRODUCTION of local Liapunov functions and Kolmogorov entropies that

The questions, “How does a system actually traverse th(\eNhen systems have just enough energy to pass through the

transition state?,” and “What kinds of trajectories carry thetransition st_ate, the SySt?mS, traject.ories bepomg collimated
system through?,” have been among the most intriguing sub"fmd_ regu_larlzed, deve'°p'”9 approxmekl?eal mvana_nts of
jects in chemical reaction theories over the past severdotion different from thqse in the potentlgl well. ThIS occurs
decaded * Several findings, both theoretié&i®® and  €Ven though the dynamics in the potential well is fully cha-
experimentaf®3° during the last decades have shed light onotic under these conditions. It was also shown that at higher

mechanics of passage through the reaction bottlenecks, affergies above the threshold, emerging mode—mode mixing
on the concept of transition state, especially in systems withVipes out these approximate invariants of motions even in
only a few degrees of freedorftof). The recent striking the region of the transition state.

experimental studies by Lovejost al.?° “see” this transi- A widespread assumption in a common class of chemical
tion state via the photofragment excitation spectra for unimo¥eaction theories® is the existence of a hypersurface in
lecular dissociation of highly vibrationally excited ketene.phase space dividing the space into reactant and product re-
These spectra revealed that the rate of this reaction is comons, and which one might suppose a chemical species
trolled by the flux through quantized thresholds within a cer-crosses only once on its path to reaction. However many
tain energy range above the barrier. The observability of théormulations of chemical reaction rate theory have had to
quantized thresholds in the transition state was first discusseadlow this probability, the “transmission coefficient,” to be
by Chatfieldet al3* Marcus? pointed out that this indicates less than unity. Davis and Gréyfirst showed that in Hamil-
that the transverse vibrational quantum numbers might intonian systems with two degrees of freed¢iof), the tran-
deed be approximate constants of motion, presumably in theition state defined as the separatrix in the phase space is
saddle region. In the same period, Berry and his coworkergiways free from barrier recrossings, so the transmission co-
explored the nonuniformity of dynamical properties of efficient for such systems is unity. They also showed the
Hamiltonian systems of severstatom clusters, wittN from  existence of the dynamical bottlenecks to intramolecular en-
3 to 13; in particular, they explored how regular and chaoticergy transfer, that is, cantofin a two-dof syster which
behavior may vary locally with the topography of the poten-form partial barriers between irregular regions of phase
tial energy surfacesPES$.'~** They revealed by analyses spacet®~18 Zhao and Rict have developed a convenient
approximation for the rate expression for the intermolecular
dElectronic mail: berry@uchicago.edu energy transfer. However, their inference depends crucially
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on the Poincaresection having only two dimensions. No Most applications of canonical perturbation theory
general theory exists yet for systems of higher(CPT) until now have focused on the comparisons of physi-
dimensionality!8:33-%5 cal quantities, e.g., classical invariants of motion, energy lev-

Focusing on the transition state periodic orbits in theels and wave functions, calculated independently by the ex-
vicinity of the unstable saddle points, Pechukas, Pollak, andct and the new Hamiltonians: the latter is transformed from
Child®® first showed in the late 1970s, for two-dimensional the exact one as simply as possible, so that it provides clas-
Hamiltonian systems such as the collineatH, reaction, sical approximate constants of motion or quasi-conserved
that, within a suitable energy range just above the saddle, thgood” quantum numbers. However, the demanding prob-
reaction bottleneck over which no recrossings occur with dem remains to identify those parts of spdeéher configu-
minimal flux of the system, can be uniquely identified as ongational, or phase spaci& which such invariants “actually”
periodic orbit dividing surfacéPODS, a dividing surface survive or break under the dynamics of the exact Hamil-
S(g;=0). (Here g, is the hyperbolic normal coordinate tonian, especially for many-dof systems, during the course of
about the saddle pointMoreover, as the energy increases,dynamical evolution. Beyond that is the question of how the
pairs of the PODSs appearing on each reactant and produgize of a zone of approximate separability depends on the
side migrate outwards, toward reactant and product state, afiimber of dof. It can be made plausible that with more dof,
the outermost PODS become identified as the reaction bottlédhe more such approximate invariances develop within a lo-
neck. De Leon and his coworké?sdeveloped a so-called cality, e.g., for certain finite durations in specific limited re-
reactive island theory; the reactive islands are the phas@ions.
space areas surrounded by the periodic orbits in the transition The purposes of the present article are these:
state region, and reactions are interpreted as occurring anr@)
cyl!ndncal mvanam manifolds thrpugh .the islands. Fair, on LCPT, which may be buried in the complexity of the
Wright, and Hutchmso%‘? glsp found in their two-, arld three- original HamiltonianH (p,q), along the originaH (p,q)
dof_ m_odels (_)f the_d|ssouat|on reaction qf hydrazoic acid that dynamics, without invoking an explicit assumption of its
§S|m|lar cyllnderllk(_a_structure emerges in the phase space as jntegrability at the order of LCPT one performed:
it leaves the tr_an§|t|on state. Hovyever these are_crgmall 2) to reveal, by applying this analysis to the isomerization
based on the findings and the existence(mirg periodic of the Arg cluster, that the invariants associated with a
orbits for all the dof, at Iegst in the region of the transition reaction coordinate in the phase space—whose reactive
states. Hence some questions remain unresolved, e.9., “HOW  yrajectories are all “no-return” trajectories—densely dis-
can one extract these periodic orbits from many-body dof  {/ipute in the sea of chaotic dof in the regions (6ifst-
phase space?” and “How can the periodic orbits persist at rank transition states; and
high energies above the saddle point, where chaos may wiRg) to show how the invariants locate in the original space
out any of them?” (p,q) and how they depend on total energy of the system

Recently, we have developed a new method to ook more  and the other physical quantities, and discuss its impli-
deeply into these local regularities about the transition state  cation for reaction dynamics, especially for many-dof

to propose a scheme of analysis of local invariants, based

of N-particle Hamiltonian system %' The crux of the systems.
method is the application of Lie canonical perturbation
theory (LCPT),*°° combined with microcanonical The remainder of this article is organized as follows. In

molecular-dynamic§MD) simulation of a region around a Sec. Il, we review our method and technique. In Sec. llI, we
saddle point. This theory constructs the nonlinear transforpropose a concept of the duration of regularity and the pro-
mation to a hyperbolic coordinate system, which “rotatescedure to calculate its location and distribution. In Sec. IV,
away” the recrossings and nonregular behavior, especially ofve describe the model and the calculations. We present our
the motion along the reaction coordinate. We showed by usresults and discussion in Sec. V. Finally, we give some con-
ing isomerization reactions in a simple cluster of 6 atomscluding remarks in Sec. VI. A brief account of this work has
bound by pairwise Lennard-Jones potentials that, even tbeen preparett:

high energies at which the transition state becomes mani-

festly chaotic, at least one action associated with the reactiop. THEORY

coordinate remains an approximate invariant of motion over
the region of the transition state. Moreover it is possible to i o F o
choose a multidimensional phase-space dividing surfacBPOUt & chosen stationary point, i.e., minimum, saddle, or
through which the transmission coefficient for the classicafl!9her rank saddle. By taking the zeroth-order Hamiltonian
reaction path is unity? We also “visualized” the dividing Ho as a se't of harmonic oscﬂlaFors, Wh'(_;h might include
hypersurface in the phase space by constructing the projeépme negatly ely curved modes, €., reactive modgs, WE €s-
tions onto subspaces of a very few coordinates and moment ,bI'Sh the hlgher-order per’gurbat!on terms tq cqnsst of non-
revealing how the “shape” of the reaction bottleneck de- inear couplings expressed in arbitrary combinations of coor-

pends on energy of the system and the passage velocify”ates*

We first expand the full Bl-dof potential energy surface

through the transition state, and how the complexity of the *

recrossings emerges over the saddle in the configurational H=Hg+ > €H,, 1)
space’®*! (The dividing hypersurface migrates, depending n=t

on the passage velocity, just as PODS)do. where
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1 s 2o wherep, is the arbitrary initial phase factor of ttkh mode.
Ho(p,Q)Zzg (pj + o qJ-)=JZl wjJj=Ho(J), (2  These yield the equations of motirfor the new coordi-
natesq(p,q) and momenta(p,q), to obey “H”:

o

> €Hq(p,g) d2qu(p.q)  _.
= —qe tor(p.)=0 (10
:szk:I Ci1djdid @ and
_ wy doe(p,q)
+€ D Cium0Okdidm+---= 2, €"Hn(3,0). (4) pe(p.g) = = ——, (12)
ikT,m n=1 Wy dt

Here,q; andp; are thejth normal coordinate and its conju-
gate momentum, respectively; and Cjy;, Cjxim,... are,
respectively, the frequency of thgh mode, the coupling
coefficient amongj;, gy, andq; and that among;, gy, q;,

where o] = 0 (J) = o (p,0) ] is independent of time be-
cause thel are constant.
The advantage of any of the several forms of CPT is the

and so forth J and ® are. respectively. action and the reduction of dimensionality needed to describe the Hamil-
Am. ' ' P Y tonian, for instance, Eq9.10) and (11) tell us that even

conjugate angle variables by, ande is the strength of the though the motions look quite complicated in the old coor-

perturbation. The frequency associated with an unstable re;. .
. dinate system, they could be followed as simple decoupled
active mode and those of the other stable modes are pure

) ) . . geriodic orbits in the phase space, without any elaborate MD
Imaginary and real, respectively. In this paper, we focus on Calculation. For realistic many-body nonlinear systems, Eqs
(3N-6)-dof Hamiltonian system around a first-rank saddle ' y y y » =4S

with total linear and angular momenta of zero by eIiminating(lO) and (11) may not be retained through the dynamical

the six degrees of freedom of the total translational and ro—evOIUtlon of the systenteven if the CPT calculation could

tational motions® To the regional Hamiltonians obtained by extend to the global region of the systeriihis is because

the expansion about stationary points, we apply a method t'E)he (nearjcommensurable conditions may densely distribute
establish the coordinate system maximizing the local regu!-n typical regions throughout the phase space, that is, any

o . |8teger linear combination of frequencies that vanishes iden-
larities in as many degrees of freedom as possible, so-call

. ) . 4346 ically at some ordere", makes the corresponding new
Lie canonical perturbation the(.)ﬂ.LCPT)’ among CPTS Hamiltonian diverge and destroys invariants of motto
the most elaborate and sophisticated theory to achieve tqﬁe system satisfies any suéhearycommensurable condi-
transformation we seek.

: tion, the new Hamiltonian must include the corresponding
To begin, let us see what all the several forms of CPTSan le variables to avoid diveraent&553 Otherwise the
provide. All the CPT& 465253 require that the canonical o9 N '

transformationW of the coordinate system minimizes the CPT calculation would have to be performed to infinite order

) — in cases of near-commensurability.
angular dependencies of the new Hamiltonidn thereby Up to now, most studies based on the CPTs have focused

making the new action variabled as nearly constant as on transforming the new Hamiltonian itself to as simple a
possible*? If the H can be obtained altogether independentform as possible, to avoid divergence, and to obtain this form
of the angle® (at the order of the perturbative calculation through specific CPT calculations of low finite order. A much

performed, then more demanding usage of CPT, especially for many-body
chemical reaction systems, should be its application as a de-
w__ _ - tector to monitoLoccurrence of local invariance, by use of
H(p,a)— H(D@ZH(J)ZHZO €'Hn(J), ) the new actiondy(p,q) and the new frequencyoy(p,q)

along MD trajectories obeying equations of motion of the
so the new action and angle variables for kie mode are original HamiltonianH(p,q). That is, it is quite likely that

expressed as the more dof in the system, the more the global invariants
through the whole phase space become spoiled; nevertheless
dJ, . H(J) the invariants of motion might survive within @ertain lo-
E:‘Jk:_ — =0, (6)  cality, i.e., for a certain finite duration, a region of phase
90y space and/or in a certain limited subset of dof. The standard
_ resonance Hamiltonidh constructed to avoid the near-
Jy= constant, (7)  commensurability might also eliminate the possibility of de-

tecting such a limited, approximate invariant of motion re-

and . . . .
tained in a certain locality.
— The traditional PoincareVon Zeipel approad? of CPT
@k:‘?H(J) EEK(J_)zconstant (8) is based on mixed-variable generating functiéns
Ay
_ dF(p,q) JF(p,q)
Oy = w(It+ By, C) a= ap P~ aq (12
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which require functional inversion to obtain explicit formu- The great advantage of LCPT in comparison with
las for (p,q) in terms of P,q) and vice versa, at each order Gustavson’s normal forfiis that, after théV is once estab-

of the perturbative calculation. This imposes a major impedidished through each order, the new transformed physical
ment to implementing higher-order perturbations and toguantities, e.g., new actioﬁk, frequencyw,, momentum
treating systems with many degrees of freedom. With thﬁ' and Coordinat@ of the kth mode, can be expressed
mixed-variable generating functions, GustavSateveloped  straightforwardly as functions of the original momenta and

an elegant technique to extract the new Hamiltonian to avoi¢oordinatesp,q) by using the evolution operatdr,
a divergence by assuming that the new Hamiltonian is ex-

2 2.2
pandable in normal forr? if the complete inversion of the - _ _ (pk+wKQK>
variables is not required, the procedure to calculate the new P =TI(pa)=T 2wy ' (18)
Hamiltonian can be rather straightforward. .
Lie canonical perturbation theori¢sCPT),**~*®first de- _ B
veloped by Hor***are superior to all the traditional meth- wk(p'Q)_Tf’ (19)
ods, in that no cumbersome functions of mixed variables K
appear and all the terms in the series are repeating Poisson p,(p,q)=Tp,, (20)
brackets. Lie transforms induce a canonical transformation,
which can be regarded as a “virtual” time evolution of phase ~ 9k(P,d)=Td. (21)
space variablez along the timee driven by a “Hamiltonian” For convenience, we denote hereinafter the transformed
W ie., guantities in terms ofp,q) byf—(p,q), e.g., notd,(p,q) but
dz - J_k(p,q), because we have already used the notation, e.g.,
de —1zW@i=-Lwz (13 3,(p.q) to represent the action fo,
Here,{} denotes the Poisson bracket. The formal solution can (P = pﬁ+ wﬁqﬁ 1 3€ q (22
be represented as k(P g 2op o E=H0(pyq)pk Oy -
’ e)=ex;{ - FL\N(E’)df' 2(0). (14) Note that the coordinates of tleiginal system{pk ,qy} are,
in other terms, regarded as the canonical variables to repre-

It can be easily provetf*®for any transforms described by S€Nt harmonic motions dfly, but{p(p.d).dx(p.q)} corre-

the functional form of Eq(14), that if thez(0) are canonical, spond tq the canonical _variaples, which represent periodic/
2(€) are also canonicaland vice versg as the time evolu- NYPerbolic regular motions in the phase space for the
tion of any Hamiltonian system is regarded as a canonicatonlineard(p,q) if H(p,q) actually exists.

transformation from canonical variables at an initial time to ~ For practical calculations, we apply a so-called “alge-
those at another time, withholding the structure of Hamil-braic quantization,®”*3~*°which replaces the cumbersome
ton’s equations. For any functiohevaluated at “a point” analytical differentiation and integration calculations that ap-
z(0), theevolution operatofl yields a new functiorg rep- ~ Pear in LCPT calculations carried out by computing directly
resented as a function af0) ande, whose functionavalue ~ With symbolic operations based on simple Poisson bracket

is equal tof evaluated at “the other point(e): rules. In the present article, we analyze the above physical
quantities up to a finite, second orderdnthrough which no

f(z(e))=TH(z(0 =exp{—f L de' | f(z(0 commensurability conditions were encountered. For ex-
(2e)=TH=(0)) Wz0):e) (z0)) ample,pi"(p,q) anda}"(p,q) have the following forms, re-

=g(z(0);e). (15) spectively,

The Lie transforms of an autonomous Hamiltonidnto a

i
—tth nn-2n —1.m:
- q)= ci'p=i i, 23
new HamiltonianH can be brought about by Pic(P.a) ngo 2 op q @3
H(z(e))=T 'H(z(e))=H(2(0)), (16) . ‘ -
N O GMpa) =2 X edp?igM, (24)
by determining thew (also assumed to be expandable in n=0 |j

powers ofe asH andH are so as to make the new Hamil- where, for example,
tonian as free from the new angle variab@sas possible, at

each order ine**~*¢ Here, theinverse evolution operator mjzﬁ m, 25
T~ brings the system dwelling at a “time” backward to the q e 4

past ine from that time along the dynamical evolution af "

yielding H(z(0)). We shall hereinafter designate the initial -3 26
values ofz, z(0), by (p,q), and those at time by (p,q) m; =] m. (26

Then, one can see that E46) corresponds to a well-known

relation between the old and new Hamiltonians hold undefach coefficient depends on the original Hamiltonian and the

n L
any canonical transformation for autonomous systems: ~ order of CPT. For example; deﬂ%tes the coefficient of the

o jth term at then(=<i)th order inp,"(p,q,) n; andm;(=0)
H(p,g)=H(p,q). (17) are arbitrary positive integers @f,q of the jth term at the
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PL(Ax: 7) = Na(AX;7)
x(t) 2= T AXANL (A )

where N,(Ax; 7) is the frequency of the time-evolution of
, x(t) within Ax for time 7. Even if two independent evolu-
Ax tions ofx(t) has a same with a sameAx, the initial point in
Ax' time t to measurer would differ. Thus, ifx(t) is a physical
quantity such a§"h(p(t),q(t)), the part of the phase space
the system traverses while maintainir@) nearly constant
> L through = would differ with each initial condition. Thus, we
T | x(B)-x(H1)|cAx 1 | x(£")-x(t'+1' Y gAx' also calculated several distinct forms of joint probabilities,
Phi1(é1.&2,....6n; 7) whereg; is eitherAx, x, Ax’, orx’ of
FIG. 1. Invariance analysis for a time-seriesxgf). any other variablex’(t),x’/x is the short-term average of
x'(t)/x(t) for a certain periodr, say, fromt’ tot’'+ 7, e.g.,

(27)

n(<i)th order inp}"(p,q). The newp"(p,q) andg;"(p,q) - jt'”dt (1) 29)
maintain time reversibility. We showed in the on-line =7 ¢/ X(0).

supplemen? the expressions through second order for

P1(p.q) andqy(p,q) at saddle I, defined below, of ArThe
contributions of the originalp; and g; in p"(p,q) and

_”h(p g) are not necessarily large and almost all modes con;

tribute top'"(p,q) andq"(p,q) for i=1 (hereinafter, mode

1 denotes the reactive mode in this artjcle

To calculate the statistics and sample the regions of the time-
series efficiently, we chose all the possible combinations of
maxi] and mirj] calculated for every(t),x'(t),..., if the
¢; include more than one fluctuation bounkb,Ax’,..., by
transforming each to each sequence of the set of stationary
points to sample each bounkix,Ax’,.... In practice, the
integrals appeared in calculation, e.g., E2jl), are replaced
as the summation for a calculated set{df} and r. For

Almost all studies based on CPT so far have worked taexample, as theh=2 joint probabilities, Ps(AJLth,pl, 7)
find constants of motion or good quantum numbers by transtells us how the passage velocity through the sadole,
forming to a new, near-integrable form, particularly by trans-would influence the finite time) quasi-invariant of action
forming into as a simple form as possible. In our strategy, byalong modek atith order: and%(AT‘i“d sz"d 7), how the
monitoring the fluctuations af(p,q) and/orw,(p,a) along  system resides in both the quasi-invariants of action and fre-
the original Hamiltonian dynamics, we scrutinize invari- quency during the same time-evolution, say, frohto t’
ances of motions buried in the complexity of the original + - with the same periodr, along the reactive mode 1
H(p.q) without making any explicit assumption of the inte- at second order; as then=3 joint probabilities,
grability of H(p,q). Thus, in contrast to the standard usagep J(AJ nd'Aaind,pl;T) tells us how therresidence of the
T e monor At procedhre s s sy iy o e quasimarant oitp) ang

’ 0] 4p,q) is affected by the passage velocity through the

than configuration spagere those in which there are local _ —nd ] o
or regional invariants of motion, which tend to persist duringsaddle' andP,(AJ3™.py,01;7), how the finite time()

the course of dynamical evolution, e.g., during isomerizaduasi-invariant - action J3"(p,q) distributes in  two-

tions, reactions or vibrational relaxations. Such surviving ordimensional planef,qy).

vague invariancies in many-body systems occur, in general, We also calculated the integrated quantitie®pf ; over

only for certain finite durations and in certain limited dof, in all the calculatedr, Phi1(€1.62...6n),

contrast to the Kolmogorov-Arnold-MosetKAM) tori

whose dimension is exactly equal to the total number of dof. Ehﬂ(gl,gz,...,gh):f d7Pn;1(€1.é2,....6n;7). (29
Here, we introduce a concept of “duration of regularity

(7).” This is the residence time, for each mode of the system  we used}"(p(t),q(t)), @i"(p(t),q(t)), P (p(t),q(t)),

at each order of perturbation, for which each mode remamand—”h(p(t) q(t)) asx(t),x’(t)... andcalculate, in Sec. 1V,

in the region of its near-constant action or frgquency, as deseveral such joint probabilities in the region of the transition

termined by a chosen bound on the fluctuatiahor Aw. As  states, by using 10000 “well-saddle-well” trajectories gen-

depicted in Fig. 1, we first transform a time series of theerated microcanonically. The analyses of local frequencies

variables, denoted hereinafter :@d), to a sequence of sta- were done only at second order becausa?ﬁ'f(p,q)=wk

tionary points, - --min[i]-maxi+1]-min[i+2]-- - - alongx(t) =constant fori =0, and 1.

with the corresponding time§i]. By choosing all the pos-

sible combinations of mgk and mirj], we calculate each

residencer for which x(t) traverses each fluctuation window

Ax defined as mdx]-min[j]. For a bundle of(t) one can We have applied this method to saddle crossing dynam-

calculate how frequently(t) traverses the region of a cer- ics in Arg, represented by the sum of pairwise Lennard-Jones

tain fluctuation windowAx for a certainr, i.e., the residence potentials. This should be regarded as an illustrative vehicle,

probability P,(AX; 7) with no peculiar or specific mod®. This system encounters

I1l. LOCAL INVARIANCE ANALYSIS

IV. MODEL AND CALCULATIONS
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rather well representable situations in the regions of its tran-
sition states, compared with some chemical bond breaking-
and-forming reactiond’*®We assign laboratory scales of en-
ergy and length appropriate for argon, i.e=s 121K ando
=3.4 A with the atomic masm=39.948 amu, and the total
linear and angular momenta are set to Z&8r@his is the
smallest inert gas cluster in which no saddle dynamics more
regular than the dynamics within the local wells was re-
vealed by the locaK entropy analysié® This cluster has two
kinds of potential energy minima. The global minimum cor-
responds to an octahedral arrangement of the at@ay),
with energyE=—12.712, and the other, higher minimum,
to a trigonal bipyramid structure of five atoms, capped on
one face by the sixth aton{(CTBP), with energy E
=—12.303. There are two distinct kinds of first-rank
saddles. One, saddle |, at energy —12.072 joins the
OCT and the CTBP minima. The other higher saddle, saddle
II, at energyE=—11.63@, joins two permutationally dis-
tinct CTBP structures. Saddle Il is slightly flatter than the
lower saddle. See also the potential energy profile presented
in Fig. 1 of our previous papéf.In the present study we
mainly analyze the invariants of motion during the course of
isomerization reaction, OGECTBP, at total energieE
=0.1, 0.5, and 1©€above the saddle point energy at saddle
l, i.e., 1645), 79223, and 158446)% of the barrier height FIG. 2. The residence pLobabiIities in the near-invarianitloforder action
of OCT—CTBP (OCT<—CTBP). The computational recipe of reactive.mode 1P2(A‘]'1th;7'), in the region of saddle | aE=Q.la; (a)_
for constructing the BI-6(=12)-dof regional Hamiltonian zeroth,(b) first, and(c) second order. The cuntou:’i are drawn in the unit of
. 1/10 000 from O to 30/10 000, and the units ®8;" for mode 1 must be
was described elsewhef&The three-, and four-body cou- multiplied by a factor of an imaginary numberthroughout the following
plings terms for both the saddles are determlned by introduGigures.
ing an appropriate cut-off value; the total number of terms is
106 three-, and 365 four-body couplings for saddle I.
Throughout this paper the parabolic barrier, the reaction
coordinate in the originalp,q) space(and in the new,q) =0.1e. The higher the order of the LCPT calculation per-

space is denoted as|,(q;) and the other bath coordinates, formed, the longer is the resndeuce t'|me of thg near- mvananj[,
as 0,03, .- 0102, Gas-...0;7) in order of increasing fre- as measured by small fluctuations in the actions. As seen in

QUENCY,0,=< ws.,...,< 1 @s=<3,...,<@y5). The units of the residence probability of the system _remaining the near-

energy, coordinate-space distance, momentum, action, frddvariant of action of the reactive moda,J;, almost all of
quency, temperature, mass and time are, respectively, the 10000 trajectories going through saddle I actually exhibit
mY2r, m*2ops, Kps, ps?, K, argon atomic mass and ps, this variable as a near-invariant within a very narrow zone,
unless otherW|se noted. ~A_2“d<0 05, at the second ordéRemember that the in-
For analyses of the infrequent saddle crossings, we em;llwdual trajectories have different values of the action,
ployed a modified Keck—Anderson mettidtb generate the J?™(p,q), depending on the incideptandq going into the
microcanonical ensemble of well-saddle-well trajectoriessaddle region.
We generated 10000 well-saddle-well trajectories for both  Then how does the system reside in each near-invariant
the saddles, which were found to be enough to yield statistief action associated with each mode, during the course of the
cal convergence in calculating the transmission coefficientgeactions? Figure 3 shows the residence probabilities within
in terms of many-body phase-space dividing hypersurfaces small region of the fluctuation of each action at each order
S(q"(p,q)=0) (i=0,1,2) atE=0.1, 0.5, 1.8 above both atE=0.1¢, for saddle I. Here, the width of the action fluc-
the saddles. For the trajectory calculat|ons we used a fourthyationAJ was taken to b\ J=<0. 05 WeII saddle- weII tra-

The total energies in our MD calculations were conserveéA—znd(p q) along the reactlve mode, at @ Iwhere all the

within =110 %, recrossing trajectories were rotated into single-crossing tra-
jectories, in terms of the phase-space dividing hypersurface
V. RESULTS AND DISCUSSIONS S(@:"Yp,q) =0).* As only a small fluctuation in each action
was allowed, the higher the order of the LCPT, the more
First, let us look into how long the system resides in theaimost all the actions become well-conserved along both re-
near-invariants of action at each order during the course oictive and nonreactive modes, i.e., at low energies, all trajec-
the reactions. To begin, curves BE(AJIth;T) in the region  tories become quasi-regular in almost of all dof, in the saddle
of saddle | are shown in Fig. 2, at each order, wiEh region. In the zeroth order approximatimemember that the
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FIG. 4. The residence probabilities in the near-invariants of actions whose

FIG. 3. The residence probabilities in the near-invariants of actions whos@ctuationsA J are within a small bound 0.05, at each order and each mode,
fluctuationsAJ are within a small bound 0.05 at each order and each modén the region of saddle | aE=0.5. The meaning of each symbol is the
in the region of saddle | & =0.1e. The bold-solid line denotes reactive same as in Fig. 3.

mode 1, and the other are the nonreactive; dasked), [J, dotted, long-

dashedA, X, +, dot—dashed, and solid lines denote 2, 3, 4,5, 6, 7, 8, 9, 10,

11, and 12, respectively. the order of LCPT, the more the action in the mode of the
reaction coordinatel; stands out in bold relief as a near-
zeroth order means the trace of the functions of normal coeonstant of motion for longer and longer times. Despite the
ordinates, in this case, action &f,, along the original higher energy, the system retains its nearly invariant
Hamiltonian dynamics the escape rate of the system from reactive-mode action through the saddle region with a resi-
the near-invariant of action, i.e., the inverse of residencalence probability within this fluctuation very similar to that
time, is fastest on average along the fastest nonreactive modé¢ E=0.1s. At much higher energy;-1.0s, the probability
12, while the higher order calculation brings this mode downof the system retaining the invariants of action becomes
to make its fluctuations slower and more comparable to thosmuch less even along the reaction coordinate at the second
of the other nonreactive modes. order, with an escape rate from that fluctuation band of the
How does the period of near-invariance of each mode’saction much larger than those rates at lower energies.
action change as the energy of the system increases? Intu- In turn, how does the system reveal the degree of invari-
ition suggests, on the basis of behavior in the vicinity ofance of the frequencw,(p,q) during the course of reac-
potential energy minima, that the nonlinearities of the PESions? Figures 5 and 6 show, respectively, how long the fre-
could not be considered as a “sufficiently weak perturba-quency BE”d(p,q) dwells in three distinct regions of the
tion,” as the energy of the system increases, and that th8uctuation in the second-order frequency of each mode
number of approximate local invariants should becomehrough saddle I, aE=0.1¢, and 0.%5. The three distinct
smaller and smaller, going to zero at sufficiently high energyregions were taken to bAw=<7%, n<Aw<27, and 2y
(This is actually a statement of the so-called “local equilib- <Aw=<37%, wheren was such a fluctuation bound that the
rium assumption” that most reaction rate theories incorpo-system reside withil w;(=A|w;|)< 7 for the (imaginary
rate. This assumption is believed to hold at least for manyfrequency of reactive mode 1, Bt=0.1ls. As Fig. 5 shows,
dof systems: The reaction system ergodically moves aboutnost degrees of freedom exhibit almost complete near-
exploring the entire phase space domain of the reactant b@variance of frequencw_ﬁ”d(p,q), within Aw=0.02, atE
fore crossing the transition staté&igure 4 atE=0.5¢, 79%  =0.1e, just as in Fig. 3, although the frequencies for some
above of the saddle point energy from the OCT minimum,modes, i.e., 2, 4, and 12, fluctuate a bit more than the others.
shows that the actions of nonreactive modes exhibit succe#xt 0.5¢, the frequencies fluctuate mofsee Figs. () and
sively more variance and shorter durations of regularity a$(c)] and a clear distinction appears among the frequency
the calculation is refined to higher order. However, the highefluctuations in different modes. However, the one variable
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FIG. 5. The residence probabilities in the near-invariants of second-order T

frequencieswz"{p,q) of each mode, whose fluctuatiodss are; (8) Aw

<0.02, (b) 0.02<Aw=0.04, and(c) 0.04<Aw=0.06, in the region of  FIG. 6. The residence probabilities in the near-invariants of second-order
saddle | aE=0.1s. The units ofAw>" for mode 1 must be multiplied by frequenciesw2™(p,q) of each mode, whose fluctuatiodsy are; (a) Aw

a factor of an imaginary numbérthroughout the following figures. The <0.02, (b) 0.02<A®<0.04, and(c) 0.04<A®»<0.06, in the region of
meaning of each symbol is the same as in Fig. 3. saddle | aE=0.5%. The symbols are the same as in Fig. 5.

. . . slower the system passes through the transition state region
that stands out among all the rest is, again, the reaction co- . . : :

) —ond at moderately high energies, where the system is manifestly
ordinateq; ", whose frequency becomes more nearly con-

. chaotic, the more the system responds to significant nonlin-
stant than all the rest. At much higher energyl.Ce, the ’ Y P g

: — . earities of the PES due to its longer residence in that region.
fluctuations of the frequency alom]ﬁ”d become more like g g

. . ... These nonlinearities would spoil any invariant of motion.
those of the rest, and the residence probability distribution iNpis is, in fact, not the case because one of those quantities,

the near-invariant band of the frequency develops a long tai i . .
g 4 P d jind(p,q), remains as the near-invariant.

toward largeAwq, like those distributions for the nonreac- action : : : -
tive modes. Let us look more deeply into this question by scrutiniz-

Next, how do the invariances of both the action and th(—:jngl the other joint probability distributions &=0.5 over

frequency correlate with each other along the reactive modes./‘?‘ddl_e g Eigures 9 ar.1d lgntell us where the system finds the
The joint probabi“tyas(Aj%nd,Aaind) tells us how the sys- near-invariant of actionJj d(p,q) and that of frequency

tem dwells in the regions dfoth the near-invariants of ac-
tion and of frequency associated witif™ for the same
times. An example is that of Fig. 7, constructedeat 0.5¢

for passage over saddle I. Here, we found that, except for a
very small 7, the topological shape of the joint probability
distributions of P; we scrutinized in this article,
P3(AJ2 A2 1) and the otheP5, are less influenced in

7, and look similar as the correspondiﬁg integrated over-.
The figure shows that the smaller the fluctuation of

J2"Yp,q), the smaller is the fluctuation @52"{p,q). Figure

8 shows how the passage velodipy| through the transition  fig. 7. The joint probability of residing in both the near-invariants of
state influences to this; very slow passages manifestly spoékcond-order actiod2™(p,q) and second-order frequen@?™(p,q) of re-
the invariance of2"{p,q) even while the action remains as active mode 1P4(AJ2™ A2, while the system is crossing saddle | at
an invariant of motion. In contrast, fast passages tend t@=0.5. Here, P;(AJ2™ Aw:™) is integrated the corresponding
make w5"(p,q) remain rather constant. We expect that thep,(AJ2™, A%2™;7) over r (see the text in detail
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FIG. 9. The joint probabilities of how the system posseﬁé‘é{p,q) and
92"%p,q) while residing in the near-invariant of second-order action

J2"Yp,q) in the region of saddle | aE=0.5; (a) P3(A2™ p2"Y, (b)
P3(AJ3™ gi").

FIG. 8. The joint probability of residing in both the near-invariants of distributions in terms op2"{p,q) andq>"{p,q) look simi-
3"(p.0) and ©2"(p,q) as a function of the absolute value of passage |ar to those ofp, andq,, except that significantly more of
velocity py,Py(AJ3",Awi™,py[), whose|p,| are; @ [p|<0.02, () probabilities for bothd J2" andAw2™, are localized around
giOEZiL)p.éEO.OQ and (c) 0.04<[p,|<0.06, in the region of saddle I ) _\ 0 a5 sharp peaks in their near-invariant regimes, in
comparison withp2"{p,q) ~42"p,q) ~0.
What mechanics underlies the clear distinction between

invariances of actiod?"(p,q) and of frequencyw>"{p,q)
®2"(p,q) in terms of the reaction coordinafg"{p,q), and ' !

the conjugate momentuﬁﬁ”d(p,q). As the figures show, the
joint probabilitiesP4(AJ2" P2 and P4(A 2", p2"Y indi-

cate that the system establishes its near-invariant action, say,
AJ=<0.05, as the system slows through the transition state
region, while, on the contrary, that slow transit of the system
through the saddle does not establish the frequency as a near-

AN

\\ o
L0
AR
PR

invariant, for example to have variand&»2"%<0.02, in the 0
local frequency spacksee Figs. @) and 1@a)]. In the re- )
gions further fromp2"®~0 in the distributions, the probabili- 0

ties increase for the system to exhibit large fluctuations in
both J2"{(p,q) andw2"{p,q). This is simply due to the fact
that, along the negatively curved reaction coordinate, the fur-
ther the system moves from the bottleneck regionﬁ@'f

~0 (i=0), the larger is thdF_th thus yielding a large
nonlinear effect associated withi"". (This makes it difficult

to treat the dynamics well away from the saddle via a finite
perturbation calculatioh. Note, however, that the near-
invariance ofw2"{(p,q) in its region of very small fluctua- )
tions is well established even Whéﬁ”‘ﬂ is large, compared 0

with that ofji”d(p,q) [see Figs. @) and 1@a)]. The prob-
ability distributions in the reaction coordinatg"(p,q), as

shown in Figs. &) and 1@b), imply that the well-conserved gg. 10, The joint probabilities of how the system possege8¥p,q) and

invariant in both the action and the frequency is located morgz2"(p,q) while residing in the near-invariant of second-order frequency

in the vicinity of G2"°=0 than in more distant regions. We @2"(p,q) in the region of saddle | &E=0.5; (a) Pa(A@™ 2", (b)

found that the qualitative shapes of these joint probabilityP,(A@z™ 2",

_—

ONPRORRO
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FIG. 11. The residence probabilities of the second-order frequencieg|z 12 The excursion length probabilities&t 0.1, 0.5, and 10in the
©2"(p,q),Po(w2"), in the region of saddle | &=0.5¢, showing how the  region of saddle [see the text in detail The bold-solid, circle, and square
system possesses the near-constant§$f(p,q). The meaning of each lines denote 0.1, 0.5, and E,Orespectively.

symbol is the same as in Fig. 3, and the unitTéf‘d must be multiplied by

a factor of —i.

the transition state region before being captured in either of
along the reaction coordinat®"(p,q)? Especially, why do the stable states, we examine the probability distribution of
these near-invariances depend on the velocity of passagscursion lengthdqf”, defined® as the maximum distance
through the transition state®Ve found that no such clear attained in the coordinatg, away from the barrier topg;
distinction appears at low energy, elg=0.1¢.) The answer =0, before returning to it; i.e., how extended is the region of
is this: The invariance of action associated with the reactiveecrossings? We explore thisia& 0.1, 0.5, and 1.8through
coordinateq,(p,q) arises from the generic feature inherentsaddle I. Figure 12 shows that the more energy in the system,
in the region of(first-rank saddle at the transition state, ir- the longer are the returning excursions from the barrier top.
respective of the system; no arbitrary combination of modedhe system more frequently traverses the minus side than the
can satisfy commensurable conditions to make an unstabjglus side ofq, in the unsymmetrical saddle | before the
mode mix with modes stable in that region, because onsystem eventually goes into either of the stable states. As
frequencyw; is pure-imaginary along the reactive dof and visualized beford%*! this is because the real, many-body
all the rest are real in the nonreactive ddf° On the con- phase space reaction bottleneck, defined Se?f”d(p,q)
trary, the invariance of the local frequenay(p,q) might  =0), is located in a region removed frogp=0 to the mi-
arise from “adiabaticity” of the passage through the transi-nus ofq; toward the global minimum OCT.
tion state region, that is, passage fast enough to make the Now let us turn to the local invariant regime in the origi-
influeﬂce of t@(individual) variations of the composite ac- nal space,,q;), and examineP4(A3§”d,pl,ql;r). Figure
tions Jy in w41(J(p,q)) less important if the system is not in 13 shows how frequently the system passes through saddle |
the quasi-regular regime where all or almost of all the actionsn the (p;,q;) plane, atE=0.1, 0.5, and 1.8 while it re-
are “good” approximate invariants. We might still expect sides in the zone of its near-invariant action, cal>"
any nonconstancy ok, to leave the separability afy as  <0.05, for a durationr=0.5° As described in our short
unaffected ag, in the transition state. The reason is that toreport related to this artici, a large amount of cone-type
pass through a dividing surface from the one side to theénvariant distributions occur in the hyperplane of the nonre-
other, the crossing trajectories typically require, at most, onlactive dofs, e.g., §5"%,g3"%, at just slightly above the
a half period of the reactive hyperbolic orbitm/w;; except threshold,~0.1s. As the energy increases, s&0.5, such
through very flat saddles, the fluctuation @f should have regions totally disappear. As seen in Fig. 13, in the reactive
little influence during such short time intervals, as shownplane, the more the energy increases, the more the zone of
in Fig. 11, @2" exhibits near-constant around?"(=w; invariant action shrinks toward the regime whaye=p;
=—1.471) with a fluctuation~=*+0.2, at 0.% through =0 and the more the population of systems occupying the

saddle 1. zone of near-invariance of action decrea&ee the vertical

) _ ) — ) o axis). However, even aE=0.5¢, one can still see a much
Local invariant of action  J,(p.q) in the original space more significant amount of local regularity in the reactive
and its energy dependence space than in the nonreactive space. Much higher energy,

How and where does the invariant of action distribute in~E=1.0s, seemingly washes out the regularity even along
the original phase spad@, q) and how is this regularity the reaction mode, shrinking it toward the origin in that co-
ruined in the region of the transition state with sufficiently ordinate. Nonetheless, rather “long-lived” regularities
high total energy? First, to show how the system traversearound the origin,p;=q,;=0, emerge as the energy in-
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3 invariance of the action, in which the reaction coordinge
XIO' a . .

, decouples from the others. The outcome of this competition
is retainingq;(p,q) as a “true reaction path” along which
the recrossing problem never appears essential.

Next, what is the implication of the sharpness of the

distribution of the local invariant of actioﬁf“d(p,q) in the
context of reaction dynamics? This spike appears and per-
sists in the region op;=q,;=0, with an increase of the total
energy of the system. Note that such a sharp spike around the
origin can also be observed by the projection onto the

(p2", 92" plane®! and, even irrespective of the local in-

variance, in an integrated distribution &,(AJ>" p;,q;)

overAji”d. This implies that the system is “trapped” in the
nonreactive space for a significant period during the course
of the reaction. The appearance of such trapped trajectories
at high energies implies that, with increasing total energy of
the system, another type of bottleneck emerges in the energy
flow between the reactive modg(p,q) and the others. It
would be almost impossible to distinguish between two pos-
sible origins this long-lived trapping phenomena, eittiBr

the space in which one views these, i.e., the order of the CPT
calculation, since the trapping in phase space
[P "(p,q),q5"(p,q) ] might be rotated away as no-trapping
trajectories, 0(2) the shrinkage of the convergence radius of
CPT (even if an infinite-order CPT would be possibleithin
which the couplings among the reactive and nonreactive dofs
are very weak. The reactive dg}"(p,q) becomes coupled,

as the energy of the system increases, with the other nonre-

FIG. 13. The joint probapllltles of the system reS|d-|ng |n_the nee}r-l.nvarlantactive dofs, not via “resonances,” but via straightforward
of the second-order actloﬁf”d(p,q) whose fluctuationg\J are within a

small bound 0.05 and whose duratiois larger than 0.5, projected onto the nonlinear couplings, elther from the higher Orda@(el+l)
two-dimensional p,,q,) plane, at(a@ E=0.1s, (b) E=0.5, (c) E=1.0¢ above the order at which one performed the CPT, or from
in the region of saddle I. those nonlinearities originating outside of the convergence

radius. These kinds of trapping phenomena in the nonreac-

tive space are, whatever the reason, quite generic irrespective
creases, even surviving to %.0This is irrespective of the of the system and the order of CPT we used, and should be
higher incident passage velocipy inferred from the higher the fundamental causes spoiling the invariance of frequency
energy, going through the reaction bottleneck. Such a “longw; even along the reactive coordinaig, as observed while
lived” regularity could not be observed in the quasi-regular[pz"(p,q)| is small[see Fig. 1(8)]. That is, long intervals
region, 0.k. with much energy stored in the nonreactive dofs could make

Let us now interpret all the findings we have shown sothe fluctuations of action of those modes affect the near-

far, in terms of the extent these are related to kinetics an¢hvariance of w;(J). Note here that, this suggests a
reaction dynamics. The heavy, localized, and persistengreviously-unrecognized type of phase space bottleneck in
weight of the distribution of near-invariants df(p,q) and the energy flows among reactive dof and nonreactive dofs. At
its associated;(p,q), up to moderately high energigsee  moderate to high energies, such bottlenecks may break the
Figs. 2—6, implies thatp;(p,q) andq.(p,q) are approxi- simplistic picture, ballistic or diffusive, of the system’s pas-
mately decoupled from the other modes, and represent theage through transition states, and even the microcanonical
local dynamics analytically. These observations strongly supstatistics(in the sense of requiring pathologically long time
port the existence of a multidimensional dividing hypersur-intervals to establish those statisjiciough microcanonical
face in the phase space, defined by the condition that thstatistics may be established quickly outside the region of the
reactive coordinate in the transformed coordinates is zeraransition state.

and that this surface is free from recrossing probl&hEhe At energies just slightly above the threshotd).1le, a
higher the energy of the system, the more distant are thgimilar sharp spike was detected arourﬁif”d(p,q)
returns of the recrossing trajectories from the barrierl®®  =q2"Yp,q)=0, but with much shorter residence tinte

fore going into either the reactant or product stagee Fig. <0.3 with the same fluctuation in its actjorThis finding

12) while the more the region of the local-invariant of action implies that the original Hamiltonian can not be transformed
Ji(p,q) shrinks (see Fig. 13 That is, the more the total to an exact, integrable Hamiltonian at second order of LCPT
energy increases, the more the broadening of the excursidn the real situation aE=0.1e. However, as shown in Fig.
regime competes with the shrinkage of the region of locaB, almost of all the actions in the nonreactive space are re-
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tained approximately as “good” invariants at that energy.regions identifiable with individual stable states. The next
The shorter trapping period, i.e., the fast energy flow beforthcoming problem, inherent to the standard CPT so far, is
tween the nonreactive subspace and the reactive mode, sugetermining how one can extend CPT to a global region of
gests that trapping is brief in the apparently near-integrabl@onstationary points removed from the unstable fixed points.
part of the nonreactive space, and has less influence on therecent development by Sugny and Joy&uen selecting
kinetics than the nonreactive modes in the chaotic subsegood zeroth-order Hamiltonians for floppy molecules, might
Remember that the standard Rice—Ramsperger—Kassebe one of the candidates to address this problem.
Marcus (RRKM) theory~® postulates that the greater the In the present article, we focused mainly on the approxi-
number of coupled dof, the slower is the energy concentramate invariants of motion associated with the reaction coor-
tion into a specific mode. dinateq; and its “statistical” properties as expressed by joint
We also want to point out here what else the distribu-probability distributions. The results strongly support the use
tions show us, besides the sharp peak around its origin, aff the concept of single, nearly separable reactive degrees of
P4(AJ2" p,,qq;7) and P,(AJ2™ p2" G2 1) (Fig. 5 in  freedom in the system’s phase space, degrees of freedom that
our short report). In particular, the latter projections onto are as free as possible from coupling to all the rest of the
the new coordinateT%”d(p,q) and its conjugate momentum degrees of freedom. On the other hand, such statistical analy-
Hind(p-Q) clearly form an “X"-character in the two- Ses with no other analytical tools would spoil the possibility
dimensional contour maps at all the three energies, just & detecting the dynamical nonuniformify*®buried among
stable and unstable manifolds to and from a hyperbolic pointhonreactive” dofs, which should become more crucial as
of a one-dimensional pendulum do. The projections onto théhe system size decreases. As yet, there is no general answer
origina| space mlvql) form rather a vague “X” on|y at just as to whether a dynamical bottleneck even exists in the re-
slightly above the threshold;0.1¢. The reduction of dimen- actant phase space domain for large systems,>sa@), dof.
sionality in the context of reaction dynamics has been one of\long this direction, although we only showed how the “in-
the most outstanding subjects, e.g., for the control theory o¥ariant” of frequency arises, varying the ratios of frequencies
chemical reaction dynamicé.This indicates that, without @k among the modes should shed light on what kinds of
any (explicit) assumption of the separation of time scale as€nergy flows take place amorgk(p,q) space’"®? Obvi-
sociated with individual modes of the system, one can exously, the more the dof, the more possible combinations
tract and visualize the stable, and unstable invariant mangmerge to make the system complicated.
folds, at least in the region of the transition state, along the  Besides the recrossing problem, the remaining ambiguity

decoupled reactive coordinadg(p,q) in the phase space. in many chemical reaction theories is the assumption of local
vibrational equilibrium: In a strong form, this becomes the

assumption that the reactant and the system in the transition
VI. CONCLUDING REMARKS state move ergodically, exploring all the phase space of the
reactant domain before crossing the transition stdte.a

We proposed the analyses of the local invariants in tran o .
sition state regions via LCPT along the dynamics of theWeaker form, one assumes only that the vibrational energy is

original HamiltonianH (p,q). In the present article, we have ngpartltlpbr:edd_m the_refc'ianL ‘an Iln t.hf t{ﬁ_nsmon t_gtate_.
studied the invariances of local climb-and-go-through dy- N€ possible diagnosis to look deeply Into this question n

namics in the vicinity of the transition state. The results ofany-dof systems would be to execute the backward trajec-

this investigation provide a foundation for our previoustory calculation, starting on the phase-space dividing hyper-

conjecture’®~*'the existence of at least three distinct energysurfaceS(Q1(p’Q):0)' sampled from the microcanonical

ranges of dynamical behavior in the vicinities (@ifst-rank ensemble. If the system exhibits an invariant of motion for a

transition states. These ranges are associated with the invaﬁ(-ertaln tlme_ in the regcta}nt. phase Space, thatis, if the syst.em
Is trapped in a certain limited region for some period, this

ants of motion along the reactive coordinatgp,q) in the ' Lo )
phase space. This is, as Hernandez and Miller pointe&out analysis should tell us how the local-equilibrium assumption
' 'is violated in the reaction. The backward calculations initi-

because any arbitrary combination of modes cannot satis ted with | = the LCPT dividing h
commensurability conditions to make an unstable mode mi €ad with 1arge momentg, (p,q) on the aviding ny=
ersurface, i.e., the bundle of the fast transitions from the

with modes stable in that region. Thus, this feature is generiB tant ¢ duct if ) s the ti id Ih
for (first-rank transition states irrespective of the system,'¢2ctant to product it one nverts the fime, Wollid revear now

Related to this, our approach provides us with a new un@ny mode-specific nature of a reaction relates with the local

touched, problem, e.g., what is the role of resonance in th ppography of the phase space in the reactant. state. With
imaginary w-plane for the bifurcation? This is one of the these, we have reviewed some of the open subjects that re-

most exciting questions, especially for relaxation dynamic§naln ahead in statistical theories of many-dof systems.

on a rugged PES, if the system finds higher-rank saddles,
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