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A solid cluster of 923 atoms bound by pairwise Morse interactions is the model for analyzing
thermodynamic properties and phase equilibria in moderately small systems. The range of the
potential is chosen so that the free energies of the icosahedral and face-centeredfociibic
structures are similar, enough so to allow a phase change between them. Statistical parameters of the
cluster are determined for the two structures from their configurational entropies and pair interaction
energies. The heat capacity and entropy of this cluster are calculated for conditions in the region of
the phase change between the two solid forms, as well as away from this region. The configurational
contribution to the thermodynamic properties is small relative to the vibrational contribution, but
dominates the differences between free energies of the two phases. The configurational
contributions to the thermodynamic properties become relatively more important for liquid clusters.
© 2000 American Institute of Physids$0021-9606800)50426-7

INTRODUCTION tials, specifically when the energies of the icosahedral and
One typical kind of phase transition of second order in:ace-.(;.entered cublglcc) structures ?rle S|{nllar. Betcause thlz.
solids 3 is that involving a change of lattice symmetry. Its ransition presumably may occur at low temperatures, condi-

jions for which parameters of any relevant configurationally

analog for clusters is the transition between different cluster =" . .
structured  However the distinction between first and excited states of the cluster can be determined reliably, the

second-order transitions disappears in some cases for sm&ﬁualysis of this transition reyeals much abouF its pgcgliarities
system$-® The reason is thatomephase changes that be- in other cases. We may think of clusters with pair interac-
come second-order transitions in large systems become {9NS between atoms as models for rare gas clusters. These
because two local miniméas functions of an order param- 9rOW to bulk systems whose cry;tal structures are close-
etel converge to one as the system is made larger. The shaRcked, both face-centered cubigcc) and hexagonal
phase transitions of bulk materials, with their precise Coexstructureé.'s In contrast, clusters of atoms with pair interac-
istence curves, transform, in their small counterparts, intdions typically have structures based on the icosahetirdn,
broad bands of dynamica”y Coexisting forms which are aéNthh is not a stable form for a bulk CryStal. The Competition
much like components as they are like phasbieither the ~ for stability between icosahedral and close packed structures
average internal energy of the clusters in an ensemble, n@f clusters is a phenomenon not yet well understood; it takes
the temperature derivative of that energy have sharp discorplace in the range of cluster size of hundreds and thousands
tinuities comparable to those of bulk systems. Nevertheles®f atoms*~** The transition between these structures, as a
since it is possible to see how phase equilibria of bulk sysfunction of both temperature and cluster size, can be reveal-
tems evolve as the number of particles comprising a clusteing, and the temperature dependence of this phase change
increases, this analogy becomes useful for large clusters. Weecomes a small-system counterpart of a structural phase
shall refer to transformations between phaselike forms ofransition in a solid.
small systems as “phase changes,” and reserve the term This analogy becomes appropriate if a cluster has one
“phase transition” for systems large enough that any coexstructure at low temperatures and another at higher tempera-
istence of two or more phases is restricted to a very narrowures. Such a change may take place if the statistical weight
range of temperatures and pressures, i.e., essentially to a tigF the higher-energy structure is higher than that of the
ditional coexistence curve. Here we consider the phasgwer-energy structure. Typically, structures with minimum
change between the icosahedral and face-centered @oblic  statistical weight are those with filled shells, i.e., magic num-
structures for clusters with pair interactions between atomspers of atoms. These are generally very low-energy struc-
We also address the melting process. tures as well. Hence we have chosen here to examine the
In bulk solids, this solid—solid transition occurs in het- phase change between structures for a cluster consisting of
erogeneous systems, comprised of atoms of different sortg.— 923 atoms. This is a magic number for an icosahedral
Here we consider the passages between structures of a Clygster, so that the global minimum on the potential surface,
ter whose particles interact through pairwise Morse poteng,e ground-state geometry, is a complete icosahedron. Ex-
cited 923 atom Morse clusters may also have locally stable
3Electronic mail: berry@rainbow.uchicago.edu fcc structures. Because, for this number of cluster atoms, the
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outermost shells are not filled, the statistical weight of the fcaifferent atomic configurations at each temperat(féis is
structure is large enough at high temperatures to give the foelatively safe for solid—solid processes, but not for solid—
structure the lower free energy. liquid or even for solid-to-surface-melted procesgétence,

In contrast to bulk systems, where the phase transitiomnve account for only the configurational part of the partition
occurs along a precise pressure-temperature curve, phaaction which has the form
changes in clusters take place throughout a range of
temperatures>~!’ For clusters of a given size, this range - €
tends to be wider for the transition between structures, if the Z= i gi ex T)
cluster has two coexisting solid forms, than for the solid—
liguid transition. The example considered here was chosed tohereg; is the statistical weight for theth configuration of
let us examine the nature of coexistence of solid structuregtoms, i.e., the number of different atomic configurations of
for typical thermodynamic parameters of clusters, and tdhis symmetry with the excitation energy. Below we treat
compare such coexistence with the solid-liquid phaselusters at low temperatures, at which only a finite number of
change of the same system. states contributes td). We take the cluster entrogdue to

With Morse interactions between atoms, i.&/(R)  atom configurations to be zero at zero temperature, so that it
=D[e?*(R~Ro) — g®(R~Ro)] the competition between the rel- is
evant structures depends on the range paramet@r pg
= qRO). In parti_cular, in the commonly studi(_ed zero-pressure o |5 | D 9 ex;{ i)_
limit, the energies of the close-packed and icosahedral struc- 7 T
tures coincide apo="7.12°Hence, we usp,=<7.1, so that in
this range the icosahedral structure generally has lower en- One can introduce an order parametgefor the system
ergy, but the energy gap between structures is not high, anghder consideration as
transition between structures proceeds at temperatures well
below the melting point. Variation gf, allows us to analyze _ Zico &)
the character of this cluster’s structural phase change and use g Zicot Zice'
it to help us understand structural phase transitions in solids.

There is a useful characteristic of atomic clusters with avhereZic, andZs are the partition functions for the clusters
pair interaction if the long-range attraction does not extendVith icosahedral and fcc structures, respectively. This param-
very far. In this case it is possible to divide the total binding €ter is one if the cluster has only icosahedral structure and is
energy of the cluster at zero temperature into three parts;Z€ro if it is always in the fcc structure. In the example used
The potential energy of interaction of nearest neighbors, thBere, we examine a Morse cluster consisting of 923 atoms
interaction potential of non-nearest neighbors, and the straiyhose ground state is icosahedral, but whose excitation en-
energy. The two latter types of interaction influence the com&rgy to the lowest fcc state is relatively small, and for which
petition among structures, although the much larger first conthe entropy of the fcc state is significantly higher than that of
tribution reflects the energy differences associated witfhe icosahedral form. In this situation, at low temperatures
changes of configurations in which the total number of nearthe order parameter varies between one and zero as the tem-
est neighbors change. Hence, at least for low-lying configuP€rature increases.
rations, one can characterize classes of excited configura- The heat capacity of the cluster due to variation of the
tional states of such a cluster as those with fewer bonds tha#omic configuration is
in the lowest-energy configuration. Each class is specified by
the difference between the number of nearest neighbors or CVZE’EXC
“bonds” in the lowest-energy configuration and the number aT
in that configuration. This categorization simplifies the P
analysis of low-lying states or low-structural excitations of = —
clusters and allows us to find statistical parameters of a solid JT
cluster which are determined just by its configuration of at- 1
oms. With these parameters, we analyze the phase transition ==
between the icosahedral and fcc structures for the solid clus- T
ter apd the influence Qf this t.ransitions on cluster_ thermodyHereZi:gi exp(—e /T) is the partition function for a given
namic parameters. It is straightforward to then include thea

fects of t-neiahb ttracti d of strai tom configuration, an#,,. is the cluster excitation energy.
efiects of non-nearest-neighbor attractions and ot strain, &g/e sha|| compare this configurational part with the vibra-
corrections to the dominant structural contribution.

tional contribution to the total heat capacity. This latter can

be estimated from the Dulong—Petit &~ 3n, wheren is

a number of cluster atoms or, as we shall do later, from a
We construct the cluster partition function like we would Debye model. Here and below we express the temperature in

that of the bulk, by dividing it into the vibrational and con- energy units. Furthermore we express the configurational ex-

figuration parts. Because we deal with excitation of only acitation energies; and temperature in units &, the disso-

few atoms in a solid cluster, we approximate by taking theciation energy of the Morse-bound diatomic, i.e., the energy

vibrational part of the partition function to be identical for of one bond.
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STATISTICAL PARAMETERS OF THE ICOSAHEDRAL TABLE |. Statistical parameters of an icosahedral cluster.
CLUSTER

€j 0 3 4
We begin by calculating the statistical weights of atomic i 1 8.6 10° 1110
6 7 8

configurations for clusters with pairwise short-range interac- € ,

: o . : . 1.7-10 9.31¢° 5.2:10°
tions between atoms, specifically including only the interac- 10 11 12
tions between nearest neighbors. If we approximate the pair g: 3.9-10° 8.4.1012 46101
interaction by the Morse potential, then the corresponding
Morse parameter is not smalk=3. Thus our first approxi-
mation is a cluster dominated by nearest-neighbor interac-

tions. o . . . The excitation energy\e=4 corresponds to excitation

The second approximation takes into account interaction e :

) . X of one edge atomAe=6 is the energy corresponding to
of non-neighboring atoms and also the strain energy of clus-_ =

! : excitation of one surface atom or two vertex atoms. We have

ters, the result of displacement of atoms from ideal close-
packing distances. This breakdot¥mas been shown to be 9,=150720=1.1- 10",
useful and is valid for Morse clusters df=3 as well as for 3
other clusters where pair interactions between nearest neigh- _ 121172 4200 -720=1.7- 107
bors dominate. ° 1.2 2 ' '

Within the framework of this scheme, we first character-
ize the lower states of excitation of a clusterdfatoms by
the deviation of the number of cluster bon@earest neigh-
borg from the maximum for that cluster, so that the excita-
tion energy from the ground state of a cluster of a spebific

Thus, we have the following method of calculation of the
statistical weight for this cluster. The partial statistical
weight which corresponds to a promotion wfatoms from
the verticese atoms from the edges arglatoms from the

: : . . . . . surface is
is an integer if the energy is measured in units of the disso-
ciation energyD of a diatomic. We define the statistical 15C° 200° 720
. . . =cv.ce.cs. CKk ~Ccvl—— —— (5)
weight of this cluster structure as the number of atomic con- gi 12-150-200-720~ 212 o] g1 Kl

figurations with the same number of bonds between nearest ) ]
neighbors. Thusg; , the statistical weight of the cluster of a Wherek=v+e+s s the total number of excited atoms, and
givenN, is the number of number of structures witfewer ~ the energy of this excitation ig;=3v +4e+6s. This for-
nearest-neighbor bonds than in the ground state. Hence Htula is valid for a small numbek of excited atoms. We
this level, we assume the vibrational statistics do not changBedlect three facts here. First, if an atom is removed from the
as a result of change of an atom configuration of the clusteMertex of a surface triangle, the removed atom cannot be
so long as the number of bonds remains constant. placed in the centers of these tnangles bgcause such a site
The icosahedral cluster consisting of 923 atoms has 217928 fewer bonds than other available positions. Second, we
bonds between atoms of neighboring layers and 2730 bond&nnot allov_v two.promoted atoms to be.Iocated in the centers
between atoms in the same lay&fsThis cluster has 561 of ne|gh.bor|ng triangles begause the distance between these
internal atoms; its surface layer consists of 12 vertex atom<&enters is onla/v3, wherea s the distance between nearest
150 edge atoms, and 200 atoms located within surface trf?€ighbors. Third, we neglect formation of bonds between
angles. Each vertex atom has 6 bonds with nearest neighboffomoted atoms because the number of such atoms is rela-
each edge atom has 7 bonds and each surface atom hadi\@ly smallin the excitations we consider. Thus, form(8a
bonds. One can place an atom in hollows between surfadg @PProximately valid for weak excitations and allows one to
atoms:; such an atom has three bonds with nearest neighbo?é".alyze statistical properties of the cluster at low but nonzero
There are 720 such positions for the cluster under considef€mperatures. The statistical weights for first excited states
ation, equal to the number of elemental triangles formed byre given in Table I. . - _
surface atoms. From this one can calculate the partial partition function
The excitations of configurations of cluster atoms con-Zi for & given excitation energy
sidered here correspond to transitions of atoms from the vari- €
ous sites in the cluster surface. We consider only transitions Zi=2 of ex;{ - ?')
involving excitation of a small number of atoms onto that
surface. These excitations determine the thermodynamic pavhere the summation is taken over the different ways to
rameters of the cluster at low temperatures. achieve a given excitation energy, and the cluster tempera-
From this it follows that the minimum excitation energy ture T is expressed in units of the binding ener@yof one
is Ae=3 which corresponds to the transition of a vertexbond. Below we evaluate the cluster entrdpy In Z for the
atom to a site on the cluster surface, where it has three neaselid cluster state up to its melting point; for this cluster the
est neighbors. The statistical weight of this excitation ismelting pointT,~0.44 according to Ref. 18Here and else-
equalg;=12-715=8580, large compared to the statistical where we takeT, to mean the temperature at which the
weight of the ground state for whiolp,=1. There are also liquid and solid clusters have equal free energies, to corre-
five possible positions on the cluster surface border for suckpond to the bulk melting temperature. Just as the solid—
an excited vertex atom; we neglect these because they are solid equilibrium for clusters actually occurs in a band and
few compared with the total number of available positions. not simply along a curve gb(T), so do the solid and liquid
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FIG. 1. The filled {111} facet of the fcc cluster consisting of FIG. 2. The character of filling of thgl11} facet for the fcc cluster with the

=861 atoms. This cluster has the structure of a truncated octahedron and $§ucture of a truncated octahedron. The basis is the cluster consisting of 861

formed from an octahedral cluster consisting of 891 atoms. Positions ofitoms and positions of its surface atoms are marked by dark circles, while

atoms of this cluster whosg 11} facets are regular triangles are shown in the positions of the new layer are marked by clear squares. Notations of

this figure. Solid lines restrict the boundary of the facet for the clustershells to which atoms belong are given above their positions, and numbers

consisting of 861 atoms. kimin these notations label coordinatesyof an atom of this shell in units
al/v2, wherea is the distance between nearest neighbors, and the origin is
the symmetry center for completed cluster shells.

clusters coexist away from the curve of equal free energies.
The values of key statistical parameters of this cluster ar®ors by 252. Here we use the convenient notation of express-
given in Table I. ing the atom position coordinates in unitsadf/2, wherea is

The method of the analysis of the Morse cluster used byhe distance between nearest neighbors, and vatliég, |7
Chenget all® allows us to determine the statistical weight are given in increasing order of these values. Then atoms
for the lowest states of the solid cluster. Below we apply thiswith identical quantities of these values form a shell; the
to a cluster with an fcc structure. The optimal shape ofvalues for nearest neighbors coincide, and two others differ
closed-shell clusters with fcc structure is a truncated octahddy unity.
dron whose surface consists of 8 hexagons and 6 sqtfares. Now we construct the configuration of cluster atoms for
First we construct the ground state of the cluster with fcon=923. We start from the configuration in which one facet
structure. Because this operation for the ground and lowess filled according to Fig. 2, and another contains a surface
excited states is cumbersome, we describe it in detail. ThBexagon which includes 19 atoms. This configuration of sur-
basis of this cluster in the ground and lowest excited states i&ce atoms is shown in Fig. 3. The addition of the surface
the structure of the truncated octahedron. The filled octahéiexagon of 19 atoms increases the number of bonds between
dral cluster of about the size of interest contains 891 atompearest neighbors by 99. Thus, the fcc cluster of 926 atoms
and has 4620 bonds between nearest neighbors. Its surfaiteits ground state has 4827 bonds between nearest neigh-
consists of 8 regular triangles, and each of 12 its edges coipors. Let us consider the statistical weight of this configura-
tains 11 atoms, including those at vertices. Cutting 6 pyra-
mids near each cluster vertex, we obtain a truncated octahe-
dron which includes 861 atoms with 4476 bonds between
nearest neighbor®. Each of removed pyramids contains 5
atoms and has edges of 2 atoms. The surface of the cluster s
formed consists of 8 hexagons with alternating side lengths
and 6 squares, each incorporating 9 atoms. The long edges ¢
each hexagon contain 7 atoms, including vertices. Square:
have the direction§100; and hexagons have directiofisl 1}
in usual notatiorf. Figure 1 shows positions of the surface
atoms of a hexagon.

The growth of this cluster transpires by filling of its
{111 facets. The first stage of the growth process consists afiG. 3. Filling of the{111} facets for the fcc cluster of 926 atoms in the
filling positions in the centers of surface triangles. Figure 2ground cqnfiguration. Pq_sitions of surface atoms of filled facet_s are marked
shows posiions of the surface atoms when the new layer dj % 070,270 bostions o stoms of e flng ver v ndated by
this facet is filled. The layer of one facet contains 46 atomser is equal 4827 compared to 4914 for the icosahedral cluster mith
and increases the number of bonds between nearest neigh926.
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tion. Choosing the filled facet and the partially filled facet in statistical weight of this excitation is the sum of several
an arbitrary way, we obtain -B=56 versions. Next, the terms. The contribution to the statistical weight by the for-
regular triangle on the surface of the partially filled facet canmation of a vacancy in the filled facet in the transformation
be chosen in 10 ways, which makes the statistical wegght of the 926 atom fcc cluster into the 923 atom clugsere Fig.
=560 for the fcc cluster of 926 atoms in its ground state. 3) and the placement of the transiting atom onto the filled
In order to transform this cluster into the lowest-energyfacet is

fcc configuration of the cluster of 923 atoms, we must re- )
move 3 atoms from it. The high-energy sites from which we &:3. 10-(10-242-1).
take these are in the edges of the nonregular hexagon of a 8-7

filled facet or in the regular polygon of the partially filled

facet. When these atoms are removed, 17 bonds betwediere the first factor accounts for the number of positions for
nearest neighbors are lost, leaving 4810 bonds in the grour¥f.cancies when three atoms are removed from the fcc cluster
state of the fcc cluster of 923 atoms. The statistical weight oPf 926 atoms to make the cluster of 923 atoms, and the
this cluster is equal to the product of a number of operation§€c0nd factor is the number of positions of the regular hexa-
for construction of the cluster of 926 atoms and numbers of®n on the surface of an unfilled facet. The first term in
operations for removal of 3 atoms from it. If only symmetric parentheses describes the case in which the initial position of

states in which all three atoms are removed from the sami'€ Promoted atom is not the vertex of an edge to which this
kind of site. this number is atom is finally attached, and the second corresponds to a

vertex position. Each term in parentheses is the product of
00o=8-7-(3-10+3-10+3-13)=5544. the number of initial positions of the promoted atoms in

) _ vertices of hexagons and final positions of this atom near
The first term in parentheses corresponds to removal of gexagon edges.

atoms from the filled facet; the second term, to removal of | the second option the vacancy is also created in a

the upper edge and two lower lateral edges from the regulgjleqd facet, but the promoted atom is then attached to an
surface hexagon of the partially filled facet, and the th'rdedge of the regular hexagon of the unfilled facet. This gives

term, to removal of the lower and two upper lateral edges; contribution into the statistical weight of this excited state
from the regular surface hexagon of the partially filled facet. ¢

Thus, even without consideration of unsymmetrical states in

which the three atoms are removed from different kinds of g

sites, the statistical weight of this structure is large compared g 7~ 3-10(10+11)- (6+ 12)~3000.
to that of the filled icosahedral cluster.

Now we formulate our general, second-order approacliere the first factor is the number of possible vacancies in
to the analysis of the Morse clusters. The total number ofhe completed facet in the course of the transformation of the
bonds between nearest neighbors of the fcc cluster in thtec cluster of 926 atoms into the cluster of 923 atoms, the
ground state is 4810, while for the icosahedral cluster of 923econd factor is the number of possible positions of the regu-
atoms the total number is 4902. We divide the interactiondar hexagon on the surface of the unfilled facet during this
between cluster atoms into the interactions between nearegperation, the third term is the number of possible positions
neighbors, the interactions between non-nearest neighbogd the promoted atom as a vertex of a hexagon, and the last
and the strain interactiort§ The total binding energies of the term is the number of free positions for this atom near an
icosahedral and fcc structures of the Morse clusters coincidedge of a small surface hexagon.
if the Morse paramete="7.11° The largest contribution to In the third case the vacancy created by transformation
the total binding energy is of course that of the interactionf the 926 atom fcc cluster into the 923 atom cluster is
between nearest neighbors, but because the difference biermed in a small hexagon. Its contribution in the statistical
tween the numbers of bonds in the two structures is smallveight of the excited state is
the two other contributions to the total binding energy are ”
important in the competition between these structures, spe- 9_1:6. 10(10+13)- (10= 11)- (6= 12)~ 6000.
cifically the strong sensitivity of this competition to the form 8.7
of the pair interaction potential between atotm$’?1~23n » o _
contrast, to analyze the excitation energy one need considg-mmarizing the above contributions, we obtain for the sta-
only the nearest-neighbor interactions, expressing the excitdiStical weight of the excited state of the cluster witi
tion in terms only of the difference between numbers of
bonds in the ground and excited states. g9,~ 100y, .

Let us analyze excited configurational states of the 923
atom fcc cluster. As above, we express the excitation energy The set of excited states withe=2 can be obtained
in terms of the number of bonds that are broken to producé&om the ground state by promotion of one atom from a
the excited configuration from that of lowest energy. Thevertex of a surface hexagon onto the surface of a square
lowest of these states corresponds to the excitation energyhere the promoted atom has four nearest neighbors. This
Ae=1 which results from the promotion of one atom from a gives
vertex of any hexagon to a free hexagon edge, so that this
atom forms two bonds with atoms of the hexagon edge. The 92=12:24-g,,
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where the first factor is the number of hexagon vertices andion of a bound pair of atoms consisting of one vertex and
the second factor is the number of positions on the surfacesne edge atom of an incomplete hexagon on the surface of a
of squares. An additional contribution gives transitions of anfree hexagonal facet. This gives
atom from an edge of a hexagon to a free edge of a hexagon.

9 g 9 9N g1 24.92.6.1g,~4-10'g,.

The total statistical weight of this excited state wil=2 is
Here the first factor is a number of initial positions of atomic

925000, - pairs, the second and third terms are the numbers of final
The excited states with e=3 can result from transitions of positions for one of these atoms, the fourth factor accounts
an atom from vertices of incomplete hexagons on the surfor the number of positions for the second atoms with respect
faces of free hexagonal facets. This gives a contribution t@o the first on the surface of a filled facet, and finally the
the statistical weight of such an excited configuration of  factor of 1/2 takes into account that permutation of the two

, promoted atoms does not change the state. One more way to
95=126-92,=6.6 10°go, obtain an excited state withe=5 is excitation of one vertex

where 12 is the number of hexagon vertices, 6 is the numbe¥om of an incomplete hexagon onto the surface of a square
of free hexagon facets, and 92 is the number of possibléaCEt- Still another puts the atom onto the surface of a filled
positions of a promoted atom on the surface of a free facehexag_on facet. These operations lead to the statistical weight
An additional contribution arises from promotions from Of excited states
edges of surface hexagons to square facets gl ~C2,.24.6.92.g,~8.7- 10, ,

93=20- 249,~600g,, where the first factor is the number of ways to choose two
where 20 is the number of atoms located on edges of surfadgnsiting atoms located on vertices of incomplete hexagons,

the second factor is the number positions on square facets,

hexagons. One more way to obtain excited states wi¢h ) -
=3 is by promotion of a bound pair of surface atoms to the@nd the two subsequent factors give the numbers of positions

square surface, where one of atoms occupies a vertex of o the surfaces of free hexagonal facets. The fourth way to

surface hexagon, and the other becomes its neighboring atoﬁr]eate excited states withe=5 arises from excitation of an

on an edge. This operation contributes a statistical weight gfternal atom of an incomplete hexagon on the surface of a
excited states free hexagon facet. It has a statistical weight of

g = 24. 24, ~ 600y, , ge'=30-6-92g,~1.6-10%g,,.

where the first factor is the number of positions for the boun({:rom this we obtain the total statistical weight for all the

pair of atoms and the second factor is the number of posi-IndS Qf excitations withA =5

tions for this pair on the surface of squares. One last contri-  g;~9.3 10°g, .

bution to the statistical weight arises from transitions of . . . .

hexagon atoms on partially filled hexagon facets. As a result, Bxgyed F:pnﬁguraﬂons withhe=6 are fp rmed as a re-
we have for the total statistical weight of excited states WithSUIt of transitions of two vertex atoms of incomplete hexa-

Ae=3 gons or a pair of bound vertex and edge atoms on the surface
of free hexagonal facets in which the promoted atoms do not
05~8000y, . form a bond each with other. This operation leads to the

. . . . statistical weight of excited states withe=6
Noncompleted structures” complicate the calculation

of the statistical weights of still higher excited states of the gG~(C§2+ 24)oC§52ogo~ 1.4.10"-g,.

fce cluster. We estimate these approximately. One can create . . .

excited states witkh e=4 by excitation of two vertex atoms A full analysis .Of all the low-lying excited ;tates of the
23 atom cluster is too complex to be practical. Here we

of incomplete hexagons to the surface of a square in the for . 3 ! :
P g d ave restricted our analysis to enumerating the states which

of a bound pair; the number of such possible excitations is” . : I L )
P P give the main contributions to the statistical weights of states

4= Ciz- 24g9,~160Q,, defined by a given coarse-grained excitation energy, specifi-
. ) cally to the breaking of a specified number of bonds. Among

where the first factor is the number of ways to choose tWoypsequent excited states we extract those itk 9 which
vertex atoms of surface hexagons. are formed as a result of excitation of three vertex atoms of

The first way to obtain an excited states wille=5  jncomplete surface hexagons to the surfaces of free hexago-
corresponds to transition of one internal atom of a surfacg,5| facets: their statistical weight is

hexagon to the surface of a square. This has a statistical s s
weight Jo~C34 Cisy 9o~5.6-10"- g5,

g4=730-24g,~ 700y, , In the same way we estimate the statistical weight of
excited states which result from transition of four vertex at-

where the first factor is the number of internal atoms in in-oms of incomplete surface hexagons onto free hexagonal fac-
complete surface hexagons and the second factor is the nurgeg

ber of available positions on the surfaces of squares. The 4 5
second way to create an excited states Wi#h=5 is excita- 912~ Cs4 Cisr 9o~ 4.1 10 g,
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If statistical weights of other intermediate levels of con-the heat capacity above the smooth contribution from each
figurational excitation were desired for estimating thermody-single phase follows directly from the partition function of
namics properties, it would be sufficient for many purpose<q. (6):
to estimate them by interpolation from the values given here. 5

- X A
Thes.e valges of statistical weights of thg fcc pluster under Ctr:< exd—a(T—Ty)?2], where a:< 2) _
consideration are used below for evaluation of its thermody- 2Ty 2Ty
namical parameters. (8)

2

In the tacitly implied pressure range, i.e., low enough that the
STRUCTURAL TRANSITIONS AND THE effects of pressure on structure may be disregarded, the dif-
THERMODYNAMIC PARAMETERS OF THE SOLID ference _betwe(_an the heat capacities at constant pressure and
CLUSTER volume is relatively small. Hence we assume these values to
be identical and denote them @slf A <2, formulas(7) and

The above analysis allows us to evaluate parameter®) give the maximum value of the heat capacity owing to
governing the phase transition between the icosahedral anfle phase transitiof .= (In g,/2)?>~ 19. For higher values
fcc cluster structures. Expressing the temperature in units ajf A, the jump in the heat capacity is greater but remains
the binding energy of one bond, we find that the clusterclose to the above value. However this value is small in
excitations start to appear d@t=0.2. The above statistical comparison with the vibrational contribution to the heat ca-
weights allow us to analyze cluster states up to temperaturgsacity, which, in the classical limit according to the Dulong—
T~0.35; the melting point for this 923 atom clusterTis,  Petit formula, isC=3n~3000, wheren is a number of clus-
=0.448 Phase coexistence of the icosahedral and fcc soliger atoms.
structures of the cluster may emerge from the low-  The width of the peak in the heat capacity is relatively
temperature condition of sole stability of the ground icosasmall. Indeed, if we define this width &sT = 1/«, we obtain
hedral state if the free energy develops a second minimurfrom formula(8)
for the fcc structure; this is how the thermodynamic param- 5
eters allow the onset of the finite-system analog of a bulk zﬂ_ 2Ty
phase transitioh?* The parameters that determine whether T A IngotINZie!/Zico
such a “new” minimum appears in the free energy are of . )
course the excitation energy and the statistical weights of and for this cluster we havaT/T,=1/5+ 1/4.
the accessible states of both structures. Note that we can Let us now extend formulgd) for the cluster heat ca-

change the value o by varying the Morse parametes pacity to allow the cluster to have two structures whose
particularly in the vicinity ofa=7.1, the value at which the ground states are separated by the energy differénda

energies of structures. this case, expressidd) gives the cluster heat capacity

The temperature at which the two phases have equal free 7o, Z, 12,2, — —
. . . . > 2
energies, which is the precise analog of the temperature of C=—Ci1+ —Cot 2 —7 (98- €;—4)%, (108
the bulk phase transitioh, between the two solid structures, - _
is determined by the condition of equality of the partition HereZ, andZ, are the total partition functions for the cor-
functions of the two phases. For convenience, we refd@i,to responding cluster structured=2,+2Z,; C, andC, are the
as the “central temperature” of the phase change. At thisheat capacities for each cluster structure when the other clus-

(€)

point, ter structure is abseng; and e, are the average excitation
energies for a given cluster structure where the ground con-
Zico=ZteeOo exp( _ A) , (6)  figuration of this structure corresponds to zero energy.
Ty Expression(10a exposes the character of the ‘“reso-

where Z, is the partition function(1) for the icosahedral Nhance” of the cluster's heat capacity that occurs when both
state Z..= Z/g, , so thaZ is the partition function of the fcc ~ Structures contribute significantly to the mean cluster energy.
cluster with no weighting for the multiplicity of the icosahe- Indeed, let us suppose in this formula that<A and e,

dral structure, andj,=5544 is the statistical weight of its <4, so that the maximum corresponds #g=2,=Z7/2.
ground icosahedral statéThis equation is of course an ap- This gives the maximum heat capacyay

proximation insofar as it does not recognize the contributions

2
of excited configurations of the two forms=rom formula Cmax:%(cl'F C2)+(E , (10b)
(6) we obtain an approximate central temperature of the
phase change, that corresponds to E@@).
A 0.116\ Figure 4 contains the dependence of the cluster heat ca-

(7) pacity on the energy gaf between the ground states of the
icosahedral and fcc structures at the temperatiire$.25
From this equation, it follows that coexistence, with equaland 0.3. One can see the resonant character of the heat ca-
probability or frequency, of the two solid phases of the 923pacity at the temperatufe=0.25 which becomes less sharp
atom cluster occurs ihA <4, so long asT,<T,,. atT=0.3.
The heat capacity has a peak at the central temperature Next we examine the entro®~ In Z associated with the
T, of the phase transition, and the “excess” contribution toconfigurational freedom of cluster atom®lote that we are

T 9ot N Zea/Zy - 140116 N2l Ziy”
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FIG. 4. The heat capacity of the solid clustemsf 923 at the temperatures FIG. 5. The partition functions which correspond to excitation of edge at-
T=0.25 andT= 0.3 as functions of the energy gapbetween ground states oms for the solid icosahedral cluster consisting of 923 atoms at the cluster
of the icosahedral and fcc structures of the cluster. melting point.

using dimensionless units, equivalent to settiag=1.) This  statistical weights of all the excited configurations, we may
function is of course very close to zero at low temperaturegstimate these properties up to temperatre$.35. In the
because the cluster is found virtually exclusively in thenext higher temperature range, up to the melting pdint
ground state of the filled icosahedral structuié.we had =0.44, where the thermodynamic properties increase still
chosen an open-shell cluster as our example, the configuréurther, we evaluate them a bit more crudely, by restricting
tional freedom even at very low temperatures would complithe estimation to include only excitations of edge atoms.
cate this issue, but nevertheless one can expect to be ableTbis can be justified because such excitations give a large
invoke quantum symmetry-breaking to retain validity of the proportion of the total statistical weight of all the available
Third Law even in such cases. excitations. According to formuléb) we have, for the parti-
Increasing the temperature increases the entropy mondion function of configurations produced by excitation kof
tonically, as it must. It happens in this system because inedge atoms to the cluster surface
creased temperature increases the population of excited K
. : . . (150- 720 4k
icosahedral configurations and the phase change occurs into 7, =—— — F( - _)
states of the fcc structure. The entropy also increases with ) T
any decrease of the energy gapetween the ground states Values of these partition functions are shown in Fig. 5. At
of the icosahedral and fcc structures. In particular, Fig. 4he melting point the total partition function due to these
shows the dependence of the cluster’s heat cap&atythe  excitations isZ=3 Z,= 165, corresponding to an entropy of
gapA between the icosahedral and fcc ground states. In thg=5.1. In addition, restricting the estimate to these excita-
limit of large values ofA, the entropy is simply that of the tjons, we obtain the cluster heat capacity at the melting point:
icosahedral cluster; at=0.3 it is equalS=0.53. Inthe limit  C=141. One can be sure that including other excitations
of small A the entropy comes overwhelmingly from the con- would increase these parameters, but the orders of magnitude
tribution of the fcc structure structure and is eq&at11l.  are established by this estimate; we h&r10C~ 100 for
These entropy values are equal to 0.7 and 9.8 at the tempergre solid icosahedral cluster of=923 at the melting point.
ture T=0.25 in the limits of large and small correspond-  For the cluster of this size, the entropy of the fcc form is
ingly, and also 0.003 and 9.2 at the temperaflire0.2. Be-  greater and the heat capacity is less than for the icosahedral
cause the fcc cluster structure is that of an open shell, theluster, but the orders of magnitude of these quantities are
number of its low-lying configurations is large. That is what the same for both forms. Thus, the contributions to the total
makes the differences in the entropy values of the fcc an@ntropy and heat capacity of the solid cluster owing to exci-
icosahedral forms so large. However the contribution to theation of atom configurations are less than the contributions
total entropy from atomic vibrations is large compared withdue to atomic vibrations.
any of these values. In particular, in the classical limit we  Despite the greater magnitude of their vibrational contri-
may estimate this contribution from the Debye model, forputions, thedifferencesbetween the entropies and heat ca-

which the entropy s pacities of the two solidlike phases are due largely to the
T differences in their configurational parts, at the level of this
Sip= 3n( In P 1) , T>hop, model, the Debye approximation. Only if we were to explore

D

the differences in force constants associated with different
where wp, is the Debye frequencithe maximum or cut-off configurational excitations, i.e., with sites having different
frequency in the modgln is a number of cluster atoms. For numbers of nearest neighbors, would the change of the vi-
the 923 atom cluster, this formula giv&s,~ 1000. brational contributions affect the results. Even at that level,
A temperature increase leads to increase of the numbehe contributions of vibrations to the difference between par-
of populated excited states, which in turn determine the thertition functions of icosahedral and fcc structures is essen-
modynamic properties of the cluster. In particular, from thetially second order, because it is only in the differences in the
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numbers of local configurational excitations that in turn gov-where C, is the contribution from atomic vibrations. With
ern the differences in the vibrational contributions to the enthe parameters of the 923 atom cluster, we find the maximum
tropies and heat capacities; a given local excitation producesf the heat capacityQy)ma=1.1-10° and a=5.5-1C (in
roughly the same change in vibrational frequencies in theinits of the reduced temperatufe ), so that the width of
two structures. This is especially true because we considehe transition range id T~10 3. In contrast to the solid-
only structures with a small number of excitations, so thatsolid phase change, for which the configurational contribu-
the long-range contributions to the thermodynamic propertions are only a small but crucial part of the heat capacities of
ties remain almost unchanged. the phases, within this range the contribution to the solid-to-

liquid heat capacity due to excitation of atomic configura-
THERMODYNAMIC PARAMETERS DUE TO CLUSTER tions exceeds that for atomic vibrations by more than two
MELTING orders of magnitude.

The thermodynamic parameters of a cluster change sub-
stantially when the cluster melts. To estimate these changes,
we take the fusion enthalpy per ataxi s for this cluster to
be that of a condensed rare gas which, in our dimensionleSSONCLUSION
units, is AHq,s=0.98. From this, we obtain the entropy

change due to the melting of the cluster The method used here, representing clusters with a pair
interaction between atoms with interaction between nearest
AE  nAHg . o
AS= —=—_™M_50p0 neighbors dominating the cluster energy, allows one to de-
Tm Tm termine the thermodynamic parameters of the cluster that

which exceeds the entropy of the solid cluster at this tem@ccount for its structural phase change between fcc and
perature by two orders of magnitude and is comparable téposahedral structures. This simplification is justified because
that due to atomic vibrations at the melting point. Thus, theonly f_ew-particle con_figuration_al excitations are syfficient to
configurational contribution to the entropy is an importantdescr'be the two solid-phaselike structures considered here;
part of the free energy of the liquid state of the cluster, but idhe contributions of non-nearest-neighbor interactions to the
relatively unimportant for its solid state. Note that the melt-total energies are very similar for the two forms in such
ing point of bulk condensed rare gasesTjs=0.58 and ex- Cases. The peculiarities of this problem are made especially
ceeds that for the cluster considered here, for whigh vivid for the Morse cluster consisting of 923 atoms by two
=0.44. Therefore, the bulk heat of fusion is clearly too highconsiderations which follow from the fact that the lowest-
to be an accurate estimate of the enthalpy of fusion of oufNergy icosahedral structure of this system has a closed-shell
cluster. Nevertheless, the above estimations are close enougfucture, while the lowest fcc structure of this size has no
to fix the magnitudes and the essential conclusions are vali¢®mpleted outer shell. First, the cluster with the filled shells
In addition, the parameters of the liquid state of condensefas @ significant energy gap between its ground and excited
rare gases are based entirely on excitations of internal atomg@nfigurations, whereas the corresponding gap for the fcc
with no consideration of pure surface effects. In clusters ofluster with unfilled shells is significantly smaller. Second,

even several thousand particles, the surface excitations alle statistical weights of the ground and first excited states of
important to the entropy, enthalpy and heat capacity. the fcc cluster are much larger than those for the icosahedral

Now let us examine the behavior of the heat capacity ircluster. This difference of the structures leads to such differ-

the melting range for the 923 atom cluster. We simplify and&"t values of thermodynamical parameters that the phasg
aggregate by using the two-level approximation for the solicchange between these structures emerges with more dramatic

and liquid states, so that the ratio of the liqig, and solid characteristics than for clusters of other comparable sizes.
Zq partition functions is For rare-gaslike potential parameters, the phase change be-

. AE tween the icosahedral and fcc structures has associated with
Z_hq:eXF{ _ ?JFAS , (11) it a marked peak in the heat capacity due to excitation of
sol

cluster configurations at low temperatures. However, if the
where AE=nAH; is the transition energy. Assuming the

range of the Morse potential is made significantly longer, so
internal cluster energ.;, due to atom vibrations to be a that the transition between the two solid structures occurs
smooth function of temperature, we represent the total inte

[near the melting point, this influence is less pronounced.
nal cluster energy in the form The contribution of excitations of atomic configurations
to the heat capacity and entropy of solid clusters is small
E=E,p+AEWq, compared to the contribution due to atomic vibrations, even

wherew,q=Z;q /(Zsort Ziq) iS the probability that the clus- in the region of the phase change between solid structures.

ter be found in the liquid state. From this we obtain the heat NUS. €xcitation of atomic configurations is not a very im-
capacity C=9E/dT near the melting poinfl,,=0.44 by Portant factor in the cluster’'s heat capacity and cluster en-
analogy with formula8) tropy, even when the phase transition between the icosahe-

dral and fcc structures of this solid cluster occurs at a low
AE ? temperature. In contrast, the configurational parts of the clus-
2T§1 ' ter heat capacity and entropy are of importance for the liquid
(12 state of the cluster.

C=C,+

AE\?
— | exd—a(T-Ty?], where a=
2T,
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