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Phase stability of solid clusters
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A solid cluster of 923 atoms bound by pairwise Morse interactions is the model for analyzing
thermodynamic properties and phase equilibria in moderately small systems. The range of the
potential is chosen so that the free energies of the icosahedral and face-centered cubic~fcc!
structures are similar, enough so to allow a phase change between them. Statistical parameters of the
cluster are determined for the two structures from their configurational entropies and pair interaction
energies. The heat capacity and entropy of this cluster are calculated for conditions in the region of
the phase change between the two solid forms, as well as away from this region. The configurational
contribution to the thermodynamic properties is small relative to the vibrational contribution, but
dominates the differences between free energies of the two phases. The configurational
contributions to the thermodynamic properties become relatively more important for liquid clusters.
© 2000 American Institute of Physics.@S0021-9606~00!50426-7#

INTRODUCTION

One typical kind of phase transition of second order in
solids1–3 is that involving a change of lattice symmetry. Its
analog for clusters is the transition between different cluster
structures.4 However the distinction between first and
second-order transitions disappears in some cases for small
systems.4–6 The reason is thatsomephase changes that be-
come second-order transitions in large systems become so
because two local minima~as functions of an order param-
eter! converge to one as the system is made larger. The sharp
phase transitions of bulk materials, with their precise coex-
istence curves, transform, in their small counterparts, into
broad bands of dynamically coexisting forms which are as
much like components as they are like phases.7 Neither the
average internal energy of the clusters in an ensemble, nor
the temperature derivative of that energy have sharp discon-
tinuities comparable to those of bulk systems. Nevertheless,
since it is possible to see how phase equilibria of bulk sys-
tems evolve as the number of particles comprising a cluster
increases, this analogy becomes useful for large clusters. We
shall refer to transformations between phaselike forms of
small systems as ‘‘phase changes,’’ and reserve the term
‘‘phase transition’’ for systems large enough that any coex-
istence of two or more phases is restricted to a very narrow
range of temperatures and pressures, i.e., essentially to a tra-
ditional coexistence curve. Here we consider the phase
change between the icosahedral and face-centered cubic~fcc!
structures for clusters with pair interactions between atoms.
We also address the melting process.

In bulk solids, this solid–solid transition occurs in het-
erogeneous systems, comprised of atoms of different sorts.
Here we consider the passages between structures of a clus-
ter whose particles interact through pairwise Morse poten-

tials, specifically when the energies of the icosahedral and
face-centered cubic~fcc! structures are similar. Because this
transition presumably may occur at low temperatures, condi-
tions for which parameters of any relevant configurationally
excited states of the cluster can be determined reliably, the
analysis of this transition reveals much about its peculiarities
in other cases. We may think of clusters with pair interac-
tions between atoms as models for rare gas clusters. These
grow to bulk systems whose crystal structures are close-
packed, both face-centered cubic~fcc! and hexagonal
structures.2,3 In contrast, clusters of atoms with pair interac-
tions typically have structures based on the icosahedron,8–11

which is not a stable form for a bulk crystal. The competition
for stability between icosahedral and close packed structures
of clusters is a phenomenon not yet well understood; it takes
place in the range of cluster size of hundreds and thousands
of atoms.12–14 The transition between these structures, as a
function of both temperature and cluster size, can be reveal-
ing, and the temperature dependence of this phase change
becomes a small-system counterpart of a structural phase
transition in a solid.

This analogy becomes appropriate if a cluster has one
structure at low temperatures and another at higher tempera-
tures. Such a change may take place if the statistical weight
of the higher-energy structure is higher than that of the
lower-energy structure. Typically, structures with minimum
statistical weight are those with filled shells, i.e., magic num-
bers of atoms. These are generally very low-energy struc-
tures as well. Hence we have chosen here to examine the
phase change between structures for a cluster consisting of
n5923 atoms. This is a magic number for an icosahedral
cluster, so that the global minimum on the potential surface,
the ground-state geometry, is a complete icosahedron. Ex-
cited 923 atom Morse clusters may also have locally stable
fcc structures. Because, for this number of cluster atoms, thea!Electronic mail: berry@rainbow.uchicago.edu
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outermost shells are not filled, the statistical weight of the fcc
structure is large enough at high temperatures to give the fcc
structure the lower free energy.

In contrast to bulk systems, where the phase transition
occurs along a precise pressure-temperature curve, phase
changes in clusters take place throughout a range of
temperatures.15–17 For clusters of a given size, this range
tends to be wider for the transition between structures, if the
cluster has two coexisting solid forms, than for the solid–
liquid transition. The example considered here was chosed to
let us examine the nature of coexistence of solid structures
for typical thermodynamic parameters of clusters, and to
compare such coexistence with the solid–liquid phase
change of the same system.

With Morse interactions between atoms, i.e.,V(R)
5D@e2a(R2R0)2ea(R2R0)#, the competition between the rel-
evant structures depends on the range parametera ~or r0

5aR0!. In particular, in the commonly studied zero-pressure
limit, the energies of the close-packed and icosahedral struc-
tures coincide atr057.1.15 Hence, we user0<7.1, so that in
this range the icosahedral structure generally has lower en-
ergy, but the energy gap between structures is not high, and
transition between structures proceeds at temperatures well
below the melting point. Variation ofr0 allows us to analyze
the character of this cluster’s structural phase change and use
it to help us understand structural phase transitions in solids.

There is a useful characteristic of atomic clusters with a
pair interaction if the long-range attraction does not extend
very far. In this case it is possible to divide the total binding
energy of the cluster at zero temperature into three parts:16

The potential energy of interaction of nearest neighbors, the
interaction potential of non-nearest neighbors, and the strain
energy. The two latter types of interaction influence the com-
petition among structures, although the much larger first con-
tribution reflects the energy differences associated with
changes of configurations in which the total number of near-
est neighbors change. Hence, at least for low-lying configu-
rations, one can characterize classes of excited configura-
tional states of such a cluster as those with fewer bonds than
in the lowest-energy configuration. Each class is specified by
the difference between the number of nearest neighbors or
‘‘bonds’’ in the lowest-energy configuration and the number
in that configuration. This categorization simplifies the
analysis of low-lying states or low-structural excitations of
clusters and allows us to find statistical parameters of a solid
cluster which are determined just by its configuration of at-
oms. With these parameters, we analyze the phase transition
between the icosahedral and fcc structures for the solid clus-
ter and the influence of this transitions on cluster thermody-
namic parameters. It is straightforward to then include the
effects of non-nearest-neighbor attractions and of strain, as
corrections to the dominant structural contribution.

STATISTICAL PARAMETERS OF CLUSTER

We construct the cluster partition function like we would
that of the bulk, by dividing it into the vibrational and con-
figuration parts. Because we deal with excitation of only a
few atoms in a solid cluster, we approximate by taking the
vibrational part of the partition function to be identical for

different atomic configurations at each temperature.~This is
relatively safe for solid–solid processes, but not for solid–
liquid or even for solid-to-surface-melted processes.! Hence,
we account for only the configurational part of the partition
function which has the form

Z5(
i

gi expS e i

T D , ~1!

wheregi is the statistical weight for thei th configuration of
atoms, i.e., the number of different atomic configurations of
this symmetry with the excitation energye i . Below we treat
clusters at low temperatures, at which only a finite number of
states contributes to~1!. We take the cluster entropySdue to
atom configurations to be zero at zero temperature, so that it
is

S5 ln Z5 ln (
i

gi expS e i

T D . ~2!

One can introduce an order parameterh for the system
under consideration as

h5
Zico

Zico1Zfcc
, ~3!

whereZico andZfcc are the partition functions for the clusters
with icosahedral and fcc structures, respectively. This param-
eter is one if the cluster has only icosahedral structure and is
zero if it is always in the fcc structure. In the example used
here, we examine a Morse cluster consisting of 923 atoms
whose ground state is icosahedral, but whose excitation en-
ergy to the lowest fcc state is relatively small, and for which
the entropy of the fcc state is significantly higher than that of
the icosahedral form. In this situation, at low temperatures
the order parameter varies between one and zero as the tem-
perature increases.

The heat capacity of the cluster due to variation of the
atomic configuration is

CV5
]Eexc

]T

5
]

]T F 1

Z (
i

e igi expS 2
e i

T D G
5

1

T2 F( ie i
2Zi

Z
2S ( ie iZi

Z D 2G , ~4!

HereZi5gi exp(2ei /T) is the partition function for a given
atom configuration, andEexc is the cluster excitation energy.
We shall compare this configurational part with the vibra-
tional contribution to the total heat capacity. This latter can
be estimated from the Dulong–Petit lawCo'3n, wheren is
a number of cluster atoms or, as we shall do later, from a
Debye model. Here and below we express the temperature in
energy units. Furthermore we express the configurational ex-
citation energiese i and temperature in units ofD, the disso-
ciation energy of the Morse-bound diatomic, i.e., the energy
of one bond.
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STATISTICAL PARAMETERS OF THE ICOSAHEDRAL
CLUSTER

We begin by calculating the statistical weights of atomic
configurations for clusters with pairwise short-range interac-
tions between atoms, specifically including only the interac-
tions between nearest neighbors. If we approximate the pair
interaction by the Morse potential, then the corresponding
Morse parameter is not small:a>3. Thus our first approxi-
mation is a cluster dominated by nearest-neighbor interac-
tions.

The second approximation takes into account interaction
of non-neighboring atoms and also the strain energy of clus-
ters, the result of displacement of atoms from ideal close-
packing distances. This breakdown13 has been shown to be
useful and is valid for Morse clusters ifa>3 as well as for
other clusters where pair interactions between nearest neigh-
bors dominate.

Within the framework of this scheme, we first character-
ize the lower states of excitation of a cluster ofN atoms by
the deviation of the number of cluster bonds~nearest neigh-
bors! from the maximum for that cluster, so that the excita-
tion energy from the ground state of a cluster of a specificN
is an integer if the energy is measured in units of the disso-
ciation energyD of a diatomic. We define the statistical
weight of this cluster structure as the number of atomic con-
figurations with the same number of bonds between nearest
neighbors. Thus,gi , the statistical weight of the cluster of a
given N, is the number of number of structures withi fewer
nearest-neighbor bonds than in the ground state. Hence at
this level, we assume the vibrational statistics do not change
as a result of change of an atom configuration of the cluster,
so long as the number of bonds remains constant.

The icosahedral cluster consisting of 923 atoms has 2172
bonds between atoms of neighboring layers and 2730 bonds
between atoms in the same layers.17 This cluster has 561
internal atoms; its surface layer consists of 12 vertex atoms,
150 edge atoms, and 200 atoms located within surface tri-
angles. Each vertex atom has 6 bonds with nearest neighbors,
each edge atom has 7 bonds and each surface atom has 9
bonds. One can place an atom in hollows between surface
atoms; such an atom has three bonds with nearest neighbors.
There are 720 such positions for the cluster under consider-
ation, equal to the number of elemental triangles formed by
surface atoms.

The excitations of configurations of cluster atoms con-
sidered here correspond to transitions of atoms from the vari-
ous sites in the cluster surface. We consider only transitions
involving excitation of a small number of atoms onto that
surface. These excitations determine the thermodynamic pa-
rameters of the cluster at low temperatures.

From this it follows that the minimum excitation energy
is De53 which corresponds to the transition of a vertex
atom to a site on the cluster surface, where it has three near-
est neighbors. The statistical weight of this excitation is
equal g3512•71558580, large compared to the statistical
weight of the ground state for whichgo51. There are also
five possible positions on the cluster surface border for such
an excited vertex atom; we neglect these because they are so
few compared with the total number of available positions.

The excitation energyDe54 corresponds to excitation
of one edge atom;De56 is the energy corresponding to
excitation of one surface atom or two vertex atoms. We have

g45150•72051.1•105,

g65
12•11

1•2

7202

2
1200•72051.7•107.

Thus, we have the following method of calculation of the
statistical weight for this cluster. The partial statistical
weight which corresponds to a promotion ofv atoms from
the verticese atoms from the edges ands atoms from the
surface is

gi5C12
v C150

e C200
s C720

k 'C12
v 150e

e!

200s

s!

720k

k!
, ~5!

wherek5v1e1s is the total number of excited atoms, and
the energy of this excitation ise i53v14e16s. This for-
mula is valid for a small numberk of excited atoms. We
neglect three facts here. First, if an atom is removed from the
vertex of a surface triangle, the removed atom cannot be
placed in the centers of these triangles because such a site
has fewer bonds than other available positions. Second, we
cannot allow two promoted atoms to be located in the centers
of neighboring triangles because the distance between these
centers is onlya/), wherea is the distance between nearest
neighbors. Third, we neglect formation of bonds between
promoted atoms because the number of such atoms is rela-
tively small in the excitations we consider. Thus, formula~5!
is approximately valid for weak excitations and allows one to
analyze statistical properties of the cluster at low but nonzero
temperatures. The statistical weights for first excited states
are given in Table I.

From this one can calculate the partial partition function
Zi for a given excitation energy

Zi5( gi expS 2
e i

T D ,

where the summation is taken over the different ways to
achieve a given excitation energy, and the cluster tempera-
ture T is expressed in units of the binding energyD of one
bond. Below we evaluate the cluster entropyS5 ln Z for the
solid cluster state up to its melting point; for this cluster the
melting pointTm'0.44 according to Ref. 18.~Here and else-
where we takeTm to mean the temperature at which the
liquid and solid clusters have equal free energies, to corre-
spond to the bulk melting temperature. Just as the solid–
solid equilibrium for clusters actually occurs in a band and
not simply along a curve ofp(T), so do the solid and liquid

TABLE I. Statistical parameters of an icosahedral cluster.

e i 0 3 4
gi 1 8.6•103 1.1•105

e i 6 7 8
gi 1.7•107 9.3•108 5.2•109

e i 10 11 12
gi 3.9•109 8.4•1012 4.6•1013
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clusters coexist away from the curve of equal free energies.7!
The values of key statistical parameters of this cluster are
given in Table I.

The method of the analysis of the Morse cluster used by
Chenget al.15 allows us to determine the statistical weight
for the lowest states of the solid cluster. Below we apply this
to a cluster with an fcc structure. The optimal shape of
closed-shell clusters with fcc structure is a truncated octahe-
dron whose surface consists of 8 hexagons and 6 squares.19

First we construct the ground state of the cluster with fcc
structure. Because this operation for the ground and lowest
excited states is cumbersome, we describe it in detail. The
basis of this cluster in the ground and lowest excited states is
the structure of the truncated octahedron. The filled octahe-
dral cluster of about the size of interest contains 891 atoms
and has 4620 bonds between nearest neighbors. Its surface
consists of 8 regular triangles, and each of 12 its edges con-
tains 11 atoms, including those at vertices. Cutting 6 pyra-
mids near each cluster vertex, we obtain a truncated octahe-
dron which includes 861 atoms with 4476 bonds between
nearest neighbors.20 Each of removed pyramids contains 5
atoms and has edges of 2 atoms. The surface of the cluster so
formed consists of 8 hexagons with alternating side lengths
and 6 squares, each incorporating 9 atoms. The long edges of
each hexagon contain 7 atoms, including vertices. Squares
have the directions$100% and hexagons have directions$111%
in usual notation.2 Figure 1 shows positions of the surface
atoms of a hexagon.

The growth of this cluster transpires by filling of its
$111% facets. The first stage of the growth process consists of
filling positions in the centers of surface triangles. Figure 2
shows positions of the surface atoms when the new layer of
this facet is filled. The layer of one facet contains 46 atoms
and increases the number of bonds between nearest neigh-

bors by 252. Here we use the convenient notation of express-
ing the atom position coordinates in units ofa/&, wherea is
the distance between nearest neighbors, and valuesuxu, uyu, uzu
are given in increasing order of these values. Then atoms
with identical quantities of these values form a shell; the
values for nearest neighbors coincide, and two others differ
by unity.

Now we construct the configuration of cluster atoms for
n5923. We start from the configuration in which one facet
is filled according to Fig. 2, and another contains a surface
hexagon which includes 19 atoms. This configuration of sur-
face atoms is shown in Fig. 3. The addition of the surface
hexagon of 19 atoms increases the number of bonds between
nearest neighbors by 99. Thus, the fcc cluster of 926 atoms
in its ground state has 4827 bonds between nearest neigh-
bors. Let us consider the statistical weight of this configura-

FIG. 1. The filled $111% facet of the fcc cluster consisting ofn
5861 atoms. This cluster has the structure of a truncated octahedron and is
formed from an octahedral cluster consisting of 891 atoms. Positions of
atoms of this cluster whose$111% facets are regular triangles are shown in
this figure. Solid lines restrict the boundary of the facet for the cluster
consisting of 861 atoms.

FIG. 2. The character of filling of the$111% facet for the fcc cluster with the
structure of a truncated octahedron. The basis is the cluster consisting of 861
atoms and positions of its surface atoms are marked by dark circles, while
the positions of the new layer are marked by clear squares. Notations of
shells to which atoms belong are given above their positions, and numbers
klm in these notations label coordinateszxyof an atom of this shell in units
a/&, wherea is the distance between nearest neighbors, and the origin is
the symmetry center for completed cluster shells.

FIG. 3. Filling of the $111% facets for the fcc cluster of 926 atoms in the
ground configuration. Positions of surface atoms of filled facets are marked
by dark circles and positions of atoms of the filling layer are indicated by
clear squares. The number of bonds between nearest neighbors for this clus-
ter is equal 4827 compared to 4914 for the icosahedral cluster withn
5926.
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tion. Choosing the filled facet and the partially filled facet in
an arbitrary way, we obtain 7•8556 versions. Next, the
regular triangle on the surface of the partially filled facet can
be chosen in 10 ways, which makes the statistical weightg
5560 for the fcc cluster of 926 atoms in its ground state.

In order to transform this cluster into the lowest-energy
fcc configuration of the cluster of 923 atoms, we must re-
move 3 atoms from it. The high-energy sites from which we
take these are in the edges of the nonregular hexagon of a
filled facet or in the regular polygon of the partially filled
facet. When these atoms are removed, 17 bonds between
nearest neighbors are lost, leaving 4810 bonds in the ground
state of the fcc cluster of 923 atoms. The statistical weight of
this cluster is equal to the product of a number of operations
for construction of the cluster of 926 atoms and numbers of
operations for removal of 3 atoms from it. If only symmetric
states in which all three atoms are removed from the same
kind of site, this number is

go58•7•~3•1013•1013•13!55544.

The first term in parentheses corresponds to removal of 3
atoms from the filled facet; the second term, to removal of
the upper edge and two lower lateral edges from the regular
surface hexagon of the partially filled facet, and the third
term, to removal of the lower and two upper lateral edges
from the regular surface hexagon of the partially filled facet.
Thus, even without consideration of unsymmetrical states in
which the three atoms are removed from different kinds of
sites, the statistical weight of this structure is large compared
to that of the filled icosahedral cluster.

Now we formulate our general, second-order approach
to the analysis of the Morse clusters. The total number of
bonds between nearest neighbors of the fcc cluster in the
ground state is 4810, while for the icosahedral cluster of 923
atoms the total number is 4902. We divide the interactions
between cluster atoms into the interactions between nearest
neighbors, the interactions between non-nearest neighbors
and the strain interactions.16 The total binding energies of the
icosahedral and fcc structures of the Morse clusters coincide
if the Morse parametera57.1.15 The largest contribution to
the total binding energy is of course that of the interactions
between nearest neighbors, but because the difference be-
tween the numbers of bonds in the two structures is small,
the two other contributions to the total binding energy are
important in the competition between these structures, spe-
cifically the strong sensitivity of this competition to the form
of the pair interaction potential between atoms.15,17,21–23In
contrast, to analyze the excitation energy one need consider
only the nearest-neighbor interactions, expressing the excita-
tion in terms only of the difference between numbers of
bonds in the ground and excited states.

Let us analyze excited configurational states of the 923
atom fcc cluster. As above, we express the excitation energy
in terms of the number of bonds that are broken to produce
the excited configuration from that of lowest energy. The
lowest of these states corresponds to the excitation energy
De51 which results from the promotion of one atom from a
vertex of any hexagon to a free hexagon edge, so that this
atom forms two bonds with atoms of the hexagon edge. The

statistical weight of this excitation is the sum of several
terms. The contribution to the statistical weight by the for-
mation of a vacancy in the filled facet in the transformation
of the 926 atom fcc cluster into the 923 atom cluster~see Fig.
3! and the placement of the transiting atom onto the filled
facet is

g18

8•7
53•10•~10•212•1!.

Here the first factor accounts for the number of positions for
vacancies when three atoms are removed from the fcc cluster
of 926 atoms to make the cluster of 923 atoms, and the
second factor is the number of positions of the regular hexa-
gon on the surface of an unfilled facet. The first term in
parentheses describes the case in which the initial position of
the promoted atom is not the vertex of an edge to which this
atom is finally attached, and the second corresponds to a
vertex position. Each term in parentheses is the product of
the number of initial positions of the promoted atoms in
vertices of hexagons and final positions of this atom near
hexagon edges.

In the second option the vacancy is also created in a
filled facet, but the promoted atom is then attached to an
edge of the regular hexagon of the unfilled facet. This gives
a contribution into the statistical weight of this excited state
of

g19

8•7
53•10~10411!•~6412!;3000.

Here the first factor is the number of possible vacancies in
the completed facet in the course of the transformation of the
fcc cluster of 926 atoms into the cluster of 923 atoms, the
second factor is the number of possible positions of the regu-
lar hexagon on the surface of the unfilled facet during this
operation, the third term is the number of possible positions
of the promoted atom as a vertex of a hexagon, and the last
term is the number of free positions for this atom near an
edge of a small surface hexagon.

In the third case the vacancy created by transformation
of the 926 atom fcc cluster into the 923 atom cluster is
formed in a small hexagon. Its contribution in the statistical
weight of the excited state is

g1-

8•7
56•10~10413!•~10411!•~6412!;6000.

Summarizing the above contributions, we obtain for the sta-
tistical weight of the excited state of the cluster withDe
51

g1;100go .

The set of excited states withDe52 can be obtained
from the ground state by promotion of one atom from a
vertex of a surface hexagon onto the surface of a square
where the promoted atom has four nearest neighbors. This
gives

g28512•24•go ,

5J. Chem. Phys., Vol. 113, No. 2, 8 July 2000 Phase stability of solid clusters
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where the first factor is the number of hexagon vertices and
the second factor is the number of positions on the surfaces
of squares. An additional contribution gives transitions of an
atom from an edge of a hexagon to a free edge of a hexagon.
The total statistical weight of this excited state withDe52 is

g2;500go .

The excited states withDe53 can result from transitions of
an atom from vertices of incomplete hexagons on the sur-
faces of free hexagonal facets. This gives a contribution to
the statistical weight of such an excited configuration of

g38512•6•92go56.6•103go ,

where 12 is the number of hexagon vertices, 6 is the number
of free hexagon facets, and 92 is the number of possible
positions of a promoted atom on the surface of a free facet.
An additional contribution arises from promotions from
edges of surface hexagons to square facets

g39520•24go;600go ,

where 20 is the number of atoms located on edges of surface
hexagons. One more way to obtain excited states withDe
53 is by promotion of a bound pair of surface atoms to the
square surface, where one of atoms occupies a vertex of a
surface hexagon, and the other becomes its neighboring atom
on an edge. This operation contributes a statistical weight of
excited states

g3-524•24go;600go ,

where the first factor is the number of positions for the bound
pair of atoms and the second factor is the number of posi-
tions for this pair on the surface of squares. One last contri-
bution to the statistical weight arises from transitions of
hexagon atoms on partially filled hexagon facets. As a result,
we have for the total statistical weight of excited states with
De53

g3;8000go .

‘‘Noncompleted structures’’ complicate the calculation
of the statistical weights of still higher excited states of the
fcc cluster. We estimate these approximately. One can create
excited states withDe54 by excitation of two vertex atoms
of incomplete hexagons to the surface of a square in the form
of a bound pair; the number of such possible excitations is

g45C12
2
•24go;1600go ,

where the first factor is the number of ways to choose two
vertex atoms of surface hexagons.

The first way to obtain an excited states withDe55
corresponds to transition of one internal atom of a surface
hexagon to the surface of a square. This has a statistical
weight

g58530•24go;700go ,

where the first factor is the number of internal atoms in in-
complete surface hexagons and the second factor is the num-
ber of available positions on the surfaces of squares. The
second way to create an excited states withDe55 is excita-

tion of a bound pair of atoms consisting of one vertex and
one edge atom of an incomplete hexagon on the surface of a
free hexagonal facet. This gives

g59;24•92•6• 1
2go;4•104go .

Here the first factor is a number of initial positions of atomic
pairs, the second and third terms are the numbers of final
positions for one of these atoms, the fourth factor accounts
for the number of positions for the second atoms with respect
to the first on the surface of a filled facet, and finally the
factor of 1/2 takes into account that permutation of the two
promoted atoms does not change the state. One more way to
obtain an excited state withDe55 is excitation of one vertex
atom of an incomplete hexagon onto the surface of a square
facet. Still another puts the atom onto the surface of a filled
hexagon facet. These operations lead to the statistical weight
of excited states

g5-;C12
2
•24•6•92•go;8.7•105go ,

where the first factor is the number of ways to choose two
transiting atoms located on vertices of incomplete hexagons,
the second factor is the number positions on square facets,
and the two subsequent factors give the numbers of positions
on the surfaces of free hexagonal facets. The fourth way to
create excited states withDe55 arises from excitation of an
internal atom of an incomplete hexagon on the surface of a
free hexagon facet. It has a statistical weight of

g5-530•6•92go;1.6•104go .

From this we obtain the total statistical weight for all the
kinds of excitations withDe55

g5;9.3•105go .

Excited configurations withDe56 are formed as a re-
sult of transitions of two vertex atoms of incomplete hexa-
gons or a pair of bound vertex and edge atoms on the surface
of free hexagonal facets in which the promoted atoms do not
form a bond each with other. This operation leads to the
statistical weight of excited states withDe56

g6;~C12
2 124!•C552

2
•go;1.4•107

•go .

A full analysis of all the low-lying excited states of the
923 atom cluster is too complex to be practical. Here we
have restricted our analysis to enumerating the states which
give the main contributions to the statistical weights of states
defined by a given coarse-grained excitation energy, specifi-
cally to the breaking of a specified number of bonds. Among
subsequent excited states we extract those withDe59 which
are formed as a result of excitation of three vertex atoms of
incomplete surface hexagons to the surfaces of free hexago-
nal facets; their statistical weight is

g9;C24
3
•C552

3
•go;5.6•1010

•go .

In the same way we estimate the statistical weight of
excited states which result from transition of four vertex at-
oms of incomplete surface hexagons onto free hexagonal fac-
ets

g12;C24
4
•C552

4
•go;4.1•1013

•go .
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If statistical weights of other intermediate levels of con-
figurational excitation were desired for estimating thermody-
namics properties, it would be sufficient for many purposes
to estimate them by interpolation from the values given here.
These values of statistical weights of the fcc cluster under
consideration are used below for evaluation of its thermody-
namical parameters.

STRUCTURAL TRANSITIONS AND THE
THERMODYNAMIC PARAMETERS OF THE SOLID
CLUSTER

The above analysis allows us to evaluate parameters
governing the phase transition between the icosahedral and
fcc cluster structures. Expressing the temperature in units of
the binding energy of one bond, we find that the cluster
excitations start to appear atT'0.2. The above statistical
weights allow us to analyze cluster states up to temperatures
T'0.35; the melting point for this 923 atom cluster isTm

50.44.8 Phase coexistence of the icosahedral and fcc solid
structures of the cluster may emerge from the low-
temperature condition of sole stability of the ground icosa-
hedral state if the free energy develops a second minimum
for the fcc structure; this is how the thermodynamic param-
eters allow the onset of the finite-system analog of a bulk
phase transition.7,24 The parameters that determine whether
such a ‘‘new’’ minimum appears in the free energy are of
course the excitation energyD and the statistical weights of
the accessible states of both structures. Note that we can
change the value ofD by varying the Morse parametera,
particularly in the vicinity ofa57.1, the value at which the
energies of structures.

The temperature at which the two phases have equal free
energies, which is the precise analog of the temperature of
the bulk phase transitionTtr between the two solid structures,
is determined by the condition of equality of the partition
functions of the two phases. For convenience, we refer toTtr

as the ‘‘central temperature’’ of the phase change. At this
point,

Zico5Zfccgo expS 2
D

Ttr
D , ~6!

where Zico is the partition function~1! for the icosahedral
state,Zfcc5Z/go , so thatZ is the partition function of the fcc
cluster with no weighting for the multiplicity of the icosahe-
dral structure, andgo55544 is the statistical weight of its
ground icosahedral state.~This equation is of course an ap-
proximation insofar as it does not recognize the contributions
of excited configurations of the two forms.! From formula
~6! we obtain an approximate central temperature of the
phase change,

Ttr5
D

ln go1 ln Zfcc /Zico
5

0.116D

110.116 lnZfcc /Zico
. ~7!

From this equation, it follows that coexistence, with equal
probability or frequency, of the two solid phases of the 923
atom cluster occurs ifD,4, so long asTtr,Tm .

The heat capacity has a peak at the central temperature
Ttr of the phase transition, and the ‘‘excess’’ contribution to

the heat capacity above the smooth contribution from each
single phase follows directly from the partition function of
Eq. ~6!:

Ctr5S D

2Ttr
D 2

exp@2a~T2Ttr!
2#, where a5S D

2Ttr
2D 2

.

~8!

In the tacitly implied pressure range, i.e., low enough that the
effects of pressure on structure may be disregarded, the dif-
ference between the heat capacities at constant pressure and
volume is relatively small. Hence we assume these values to
be identical and denote them asC. If D,2, formulas~7! and
~8! give the maximum value of the heat capacity owing to
the phase transitionCmax5(ln go/2)2'19. For higher values
of D, the jump in the heat capacity is greater but remains
close to the above value. However this value is small in
comparison with the vibrational contribution to the heat ca-
pacity, which, in the classical limit according to the Dulong–
Petit formula, isC53n'3000, wheren is a number of clus-
ter atoms.

The width of the peak in the heat capacity is relatively
small. Indeed, if we define this width asDT51/a, we obtain
from formula ~8!

DT[
2Ttr

2

D
5

2Ttr

ln go1 ln Zfcc /Zico
, ~9!

and for this cluster we haveDT/Ttr51/541/4.
Let us now extend formula~4! for the cluster heat ca-

pacity to allow the cluster to have two structures whose
ground states are separated by the energy differenceD. In
this case, expression~4! gives the cluster heat capacity

C5
Z1

Z
C11

Z2

Z
C21

1

T2

Z1Z2

Z2 ~ge12e22D!2, ~10a!

HereZ1 andZ2 are the total partition functions for the cor-
responding cluster structures,Z5Z11Z2 ; C1 andC2 are the
heat capacities for each cluster structure when the other clus-
ter structure is absent;e1 and e2 are the average excitation
energies for a given cluster structure where the ground con-
figuration of this structure corresponds to zero energy.

Expression~10a! exposes the character of the ‘‘reso-
nance’’ of the cluster’s heat capacity that occurs when both
structures contribute significantly to the mean cluster energy.
Indeed, let us suppose in this formula thate1!D and e2

!D, so that the maximum corresponds toZ15Z25Z/2.
This gives the maximum heat capacityCmax

Cmax5
1

2
~C11C2!1S D

2TD 2

, ~10b!

that corresponds to Eq.~8!.
Figure 4 contains the dependence of the cluster heat ca-

pacity on the energy gapD between the ground states of the
icosahedral and fcc structures at the temperaturesT50.25
and 0.3. One can see the resonant character of the heat ca-
pacity at the temperatureT50.25 which becomes less sharp
at T50.3.

Next we examine the entropyS5 ln Z associated with the
configurational freedom of cluster atoms.~Note that we are

7J. Chem. Phys., Vol. 113, No. 2, 8 July 2000 Phase stability of solid clusters
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using dimensionless units, equivalent to settingkB51.! This
function is of course very close to zero at low temperatures
because the cluster is found virtually exclusively in the
ground state of the filled icosahedral structure.~If we had
chosen an open-shell cluster as our example, the configura-
tional freedom even at very low temperatures would compli-
cate this issue, but nevertheless one can expect to be able to
invoke quantum symmetry-breaking to retain validity of the
Third Law even in such cases.!

Increasing the temperature increases the entropy mono-
tonically, as it must. It happens in this system because in-
creased temperature increases the population of excited
icosahedral configurations and the phase change occurs into
states of the fcc structure. The entropy also increases with
any decrease of the energy gapD between the ground states
of the icosahedral and fcc structures. In particular, Fig. 4
shows the dependence of the cluster’s heat capacitySon the
gapD between the icosahedral and fcc ground states. In the
limit of large values ofD, the entropy is simply that of the
icosahedral cluster; atT50.3 it is equalS50.53. In the limit
of smallD the entropy comes overwhelmingly from the con-
tribution of the fcc structure structure and is equalS'11.
These entropy values are equal to 0.7 and 9.8 at the tempera-
ture T50.25 in the limits of large and smallD correspond-
ingly, and also 0.003 and 9.2 at the temperatureT50.2. Be-
cause the fcc cluster structure is that of an open shell, the
number of its low-lying configurations is large. That is what
makes the differences in the entropy values of the fcc and
icosahedral forms so large. However the contribution to the
total entropy from atomic vibrations is large compared with
any of these values. In particular, in the classical limit we
may estimate this contribution from the Debye model, for
which the entropy is1

Svib53nS ln
T

\vD
21D , T@\vD ,

wherevD is the Debye frequency~the maximum or cut-off
frequency in the model!; n is a number of cluster atoms. For
the 923 atom cluster, this formula givesSvib;1000.

A temperature increase leads to increase of the number
of populated excited states, which in turn determine the ther-
modynamic properties of the cluster. In particular, from the

statistical weights of all the excited configurations, we may
estimate these properties up to temperaturesT'0.35. In the
next higher temperature range, up to the melting pointTm

50.44, where the thermodynamic properties increase still
further, we evaluate them a bit more crudely, by restricting
the estimation to include only excitations of edge atoms.
This can be justified because such excitations give a large
proportion of the total statistical weight of all the available
excitations. According to formula~5! we have, for the parti-
tion function of configurations produced by excitation ofk
edge atoms to the cluster surface

Zk5
~150•720!k

~k! !2 expS 2
4k

T D .

Values of these partition functions are shown in Fig. 5. At
the melting point the total partition function due to these
excitations isZ5( Zk5165, corresponding to an entropy of
S55.1. In addition, restricting the estimate to these excita-
tions, we obtain the cluster heat capacity at the melting point:
C5141. One can be sure that including other excitations
would increase these parameters, but the orders of magnitude
are established by this estimate; we haveS;10,C;100 for
the solid icosahedral cluster ofn5923 at the melting point.
For the cluster of this size, the entropy of the fcc form is
greater and the heat capacity is less than for the icosahedral
cluster, but the orders of magnitude of these quantities are
the same for both forms. Thus, the contributions to the total
entropy and heat capacity of the solid cluster owing to exci-
tation of atom configurations are less than the contributions
due to atomic vibrations.

Despite the greater magnitude of their vibrational contri-
butions, thedifferencesbetween the entropies and heat ca-
pacities of the two solidlike phases are due largely to the
differences in their configurational parts, at the level of this
model, the Debye approximation. Only if we were to explore
the differences in force constants associated with different
configurational excitations, i.e., with sites having different
numbers of nearest neighbors, would the change of the vi-
brational contributions affect the results. Even at that level,
the contributions of vibrations to the difference between par-
tition functions of icosahedral and fcc structures is essen-
tially second order, because it is only in the differences in the

FIG. 4. The heat capacity of the solid cluster ofn5923 at the temperatures
T50.25 andT50.3 as functions of the energy gapD between ground states
of the icosahedral and fcc structures of the cluster.

FIG. 5. The partition functions which correspond to excitation of edge at-
oms for the solid icosahedral cluster consisting of 923 atoms at the cluster
melting point.
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numbers of local configurational excitations that in turn gov-
ern the differences in the vibrational contributions to the en-
tropies and heat capacities; a given local excitation produces
roughly the same change in vibrational frequencies in the
two structures. This is especially true because we consider
only structures with a small number of excitations, so that
the long-range contributions to the thermodynamic proper-
ties remain almost unchanged.

THERMODYNAMIC PARAMETERS DUE TO CLUSTER
MELTING

The thermodynamic parameters of a cluster change sub-
stantially when the cluster melts. To estimate these changes,
we take the fusion enthalpy per atomDH fus for this cluster to
be that of a condensed rare gas which, in our dimensionless
units, is DH fus50.98. From this, we obtain the entropy
change due to the melting of the cluster

DS5
DE

Tm
5

nDH fus

Tm
52060,

which exceeds the entropy of the solid cluster at this tem-
perature by two orders of magnitude and is comparable to
that due to atomic vibrations at the melting point. Thus, the
configurational contribution to the entropy is an important
part of the free energy of the liquid state of the cluster, but is
relatively unimportant for its solid state. Note that the melt-
ing point of bulk condensed rare gases isTm50.58 and ex-
ceeds that for the cluster considered here, for whichTm

50.44. Therefore, the bulk heat of fusion is clearly too high
to be an accurate estimate of the enthalpy of fusion of our
cluster. Nevertheless, the above estimations are close enough
to fix the magnitudes and the essential conclusions are valid.
In addition, the parameters of the liquid state of condensed
rare gases are based entirely on excitations of internal atoms,
with no consideration of pure surface effects. In clusters of
even several thousand particles, the surface excitations are
important to the entropy, enthalpy and heat capacity.

Now let us examine the behavior of the heat capacity in
the melting range for the 923 atom cluster. We simplify and
aggregate by using the two-level approximation for the solid
and liquid states, so that the ratio of the liquidZliq and solid
Zsol partition functions is

Zliq

Zsol
5expS 2

DE

T
1DSD , ~11!

whereDE5nDH fus is the transition energy. Assuming the
internal cluster energyEvib due to atom vibrations to be a
smooth function of temperature, we represent the total inter-
nal cluster energy in the form

E5Evib1DEwliq ,

wherewliq5Zliq /(Zsol1Zliq) is the probability that the clus-
ter be found in the liquid state. From this we obtain the heat
capacity C5]E/]T near the melting pointTm50.44 by
analogy with formula~8!

C5Co1S DE

2Tm
D 2

exp@2a~T2Tm!2#, where a5S DE

2Tm
2 D 2

,

~12!

whereCo is the contribution from atomic vibrations. With
the parameters of the 923 atom cluster, we find the maximum
of the heat capacity (CV)max51.1•106 and a55.5•106 ~in
units of the reduced temperatureT22!, so that the width of
the transition range isDT;1023. In contrast to the solid-
solid phase change, for which the configurational contribu-
tions are only a small but crucial part of the heat capacities of
the phases, within this range the contribution to the solid-to-
liquid heat capacity due to excitation of atomic configura-
tions exceeds that for atomic vibrations by more than two
orders of magnitude.

CONCLUSION

The method used here, representing clusters with a pair
interaction between atoms with interaction between nearest
neighbors dominating the cluster energy, allows one to de-
termine the thermodynamic parameters of the cluster that
account for its structural phase change between fcc and
icosahedral structures. This simplification is justified because
only few-particle configurational excitations are sufficient to
describe the two solid-phaselike structures considered here;
the contributions of non-nearest-neighbor interactions to the
total energies are very similar for the two forms in such
cases. The peculiarities of this problem are made especially
vivid for the Morse cluster consisting of 923 atoms by two
considerations which follow from the fact that the lowest-
energy icosahedral structure of this system has a closed-shell
structure, while the lowest fcc structure of this size has no
completed outer shell. First, the cluster with the filled shells
has a significant energy gap between its ground and excited
configurations, whereas the corresponding gap for the fcc
cluster with unfilled shells is significantly smaller. Second,
the statistical weights of the ground and first excited states of
the fcc cluster are much larger than those for the icosahedral
cluster. This difference of the structures leads to such differ-
ent values of thermodynamical parameters that the phase
change between these structures emerges with more dramatic
characteristics than for clusters of other comparable sizes.
For rare-gaslike potential parameters, the phase change be-
tween the icosahedral and fcc structures has associated with
it a marked peak in the heat capacity due to excitation of
cluster configurations at low temperatures. However, if the
range of the Morse potential is made significantly longer, so
that the transition between the two solid structures occurs
near the melting point, this influence is less pronounced.

The contribution of excitations of atomic configurations
to the heat capacity and entropy of solid clusters is small
compared to the contribution due to atomic vibrations, even
in the region of the phase change between solid structures.
Thus, excitation of atomic configurations is not a very im-
portant factor in the cluster’s heat capacity and cluster en-
tropy, even when the phase transition between the icosahe-
dral and fcc structures of this solid cluster occurs at a low
temperature. In contrast, the configurational parts of the clus-
ter heat capacity and entropy are of importance for the liquid
state of the cluster.
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