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Abstract. Thermal inertia and thermal mass are concepts that o�er means to describe trans-
port of heat in nonequilibrium uids. However there are options regarding how to separate the
part of the total ow that caries entropy from the \mechanical", nonentropy-bearing part. Some
hypotheses are examined and compared for constructing such a �eld theory of thermal mass in
the energy representation. A global intrinsic symmetry and a �nite thermal momentum imply
that any formulation which hypothesizes a constant ratio � of thermal mass to the entropy must
tie the thermal mass to the so-called bare mass of particles, to preserve the global conservation of
matter. However, in any formulation consistent with the Grad-Boltzmann theory, where � must
be variable, the thermal mass behaves as a separate variable governed by the entropy and the
second law. Nonetheless, in this case � has a reasonably broad plateau of values within which
entropy is a measure of the thermal mass associated with changes of state. Nonlinear transfor-
mations linking usual thermodynamic variables with those of the thermal mass frame preserve
the components of the tensor of matter, including N�other's energy and pressure. A formula is
given for the fraction of the observed mass assignable as thermal mass, in accordance with Grad's
solution of the Boltzmann equation.

1. Introduction

The thermal inertia, a gradual change of the heat ux under a rapid change of

the temperature gradient, comes logically from kinetic theory in Grad's moment

analysis of the Boltzmann equation [1] and has been rediscovered in various mod-

i�cations of the Chapman-Enskog [2, 3] and moment methods [4 { 7]. The e�ect

manifests itself in both energy and entropy representations of thermodynamics,

in the latter case as an inertia of the heat, and in the former as a momentum

of the entropy ow. While implicit in early kinetic approaches [8 { 10], the e�ect

became apparent through paradoxes arising from the parabolic equations of heat

implying in�nite propagation speeds of thermal signals [11 { 18]. Experiments with

heat waves in liquid helium are manifestations of thermal inertia [19 { 21]. How-

ever predictions say that this e�ect should also manifest itself in dielectric solids
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[22 { 24]; experiments do con�rm the propagating-wave nature of heat in the so-

called \ballistic" regime of phonon transfer [25]. Probably its full complexity can

be described adequately only as quantum transport [26] which is perhaps why

classical relativistic approaches [27 { 29] did not add signi�cantly to our under-

standing of the e�ect. Nevertheless it has been suggested [30] that the e�ect might

be essential for solving the long-standing di�culty of the relativistic temperature

transformation [31].

Inclusion of thermal inertia had a remarkable inuence on the thermodynamic

analyses of heat [32 { 35], and on the form of the higher-order hydrodynamics [36 {

40]. In the main, these studies shifted attention from the nonequilibrium internal

energy to the kinetic (ux-dependent) entropy, typical of statistical mechanical

approaches, leaving the physical problem of thermal inertia unexplained. It is use-

ful to review the situation of the momentum of heat ow, before proceeding further.

In both representations, energy and entropy, at least one sort of assignment of an

inertia to the heat ux is easy to make, because any ow of the (relativistically

evaluated) energy jq must correspond to the momentum density jq=c
2, accord-

ing to relativity theory. While this is true, it is incomplete because the \robust",

persisting momentum jq=c
2 is only a resulting, residual quantity, �xed by the de�-

nition of the hydrodynamic velocity in the particle frame, in contrast to the energy

frame where jq and its associates would not appear. Within constraints imposed

by the covariance principles and symmetry of the matter tensor, the mechanism of

heat transfer involves di�usive momenta of di�erent magnitudes, and jq=c
2 is only

the net result of their incomplete compensation in the relativistic particle frame.

Hence the propagation speed, 3�1=2c is very high (the related residual momentum,

jq=c
2, is small), whereas the actual signal speeds, within Grad's theory, are low,

of order kT=m, the thermal speed. Paradoxically, while the value jq=c
2 could only

be associated with nearly reversible processes, actual ows clearly generate large

entropy, corresponding to the �nite values of thermal conductivities of the uid.

The present work and a complementary relativistic approach develop a quanti-

tative description of thermal inertia, yet leave some ambiguities unresolved. These

will remain until some basic problems in nonequilibrium theory are solved. For

example, Callen's postulatory formulation of thermodynamics [41] and the corre-

spondence of various representations have no clear extensions to nonequilibrium

theories as yet. Inertia of owing mass and energy are not equivalent in that

context. The inertia of mass di�usion follows from nearly classical concepts: the

arguments may be kinetic [42, 43], random walk [44], or even phenomenological

[45 { 47]. They can apply to molecular and Brownian di�usion [48, 49], and to tur-

bulent systems [50]. Otherwise, the arguments pertaining to thermal inertia are

more subtle; statistical mechanical theories have been called upon, including the

maximum entropy formalism [51, 52], projection operators, [52], and even some
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entropy-less theories [53], see reviews [54 { 56]. Thus, while theories exist of the

e�ect in the entropy representation, its physical picture and objectivity when pass-

ing to other frames remains to be worked out. This motivates our study of thermal

inertia in the energy representation of thermodynamics.

A recently developed variational approach to irreversible uids [57 { 59] is an

e�cient tool to investigate the thermal inertia systematically and quantitative-

ly, so long as some consequences from kinetic theory can be incorporated into

the Lagrangian or Hamiltonian functions of the uid, L and H respectively. The

approach, which extends the \reversible" descriptions of uids [60] yields systemat-

ically all the e�ects regarded standardly as \irreversible". It does this by appending

the entropy ux Js = �sus and its conjugate momentum-like variable (\thermal

momentum", @L=@us) to the set of classical variables, the densities of mass and

entropy, � and �s and their conjugates. (The conjugates are of course not inde-

pendent because of their dependence on the �eld variables.) According to Muschik

[61], the �eld densities �s and J s can be taken as primitive variables; the entropy

transfer velocity us = Js=�s. The use of Js, augmenting the classical variables,

su�ces to complete the variational theory of reversible uids; the additional inclu-

sion of certain dissipation potentials enables one to develop the theory of usual

irreversible uids. Our restriction to uids is due to the neglect of the elasticity

e�ects in the analysis.

In the �eld formulation including the entropy ux, the second law constraint

or Clausius-Duhem equation has the usual form, equating the four-divergence of

the entropy four-ux (�s; �sus) to the entropy source �s. The fundamental nature

of such a balance law, suggested by various H theorems as the positiveness of

�s, can be and had been disputed in both kinetic theory [62] and information-

theoretic approaches [52]. In the Chapman-Enskog expansion of �s a de�nite sign

can be attached only to the �rst order �
(1)
s , but not to �

(2)
s or any of the higher

order terms. (Yet the fact that it is possible to imagine �elds that make �
(2)
s

negative, is no evidence that in physical situations the sum of �
(2)
s and higher

order terms could be both negative and larger in magnitude than �
(1)
s .) In Grad's

expansions the neglect of higher order moments is accepted, with no assurance

that the expansions converge in general; the di�culty of this sort is also observed

in informationtheoretic approaches [52]. (See however Eu's modi�ed moments [7]).

Both Grad's kinetic results [1] and Nettleton's phase-space integral [52] show that

the entropy ux is not exactly equal to jq=T . Thus there is no certainty that

the �eld balance equation for the entropy is a universal law in systems other than

dilute gases. It is rather the concavity of the entropy with respect to all its variables,

including derivatives, which is regarded as a strongest formulation of the second

law [41, 62, 63]. However, a universality of the entropy balance built in the action
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functional is by no means necessary [59, 60]. Indeed, in the action formalism, the

source sign properties in the balances of the entropy or mass are inessential for

the development of the fundamental equation of Gibbs in the sense of Callen [41].

They inuence only particular results, e.g. positivity of the partial derivative of

the energy E with respect to the so-called thermal phase �, which is equal to �s
[59]. What is essential is rather a proper set of constraints built into the action

integral (leading to the pressure) and the functional structure of �s.

In particular, it is inessential whether or not �s is positive in any case, or, as

one may presuppose [62], only up to the �rst order terms. When chemical reactions

occur, the mass sources of individual species can obviously be of either sign. Yet,

in entropy balances thus far investigated, we assumed a standard, positive entropy

source, �s, evaluated on the basis of the experimentally-supported Joule-Onsager

expression. This implies that a thermal mass must be created when the entropy

and the thermal inertia are equivalent, which is the case of a constant �, the

thermal inertia per unit of entropy . This conclusion is a subsidiary, particular

result of the Joule-type expression for a positive �s. More generally, the concept

of a thermal mass arises from breaking the total mass, a conserved quantity, into

two components: a \bare" or kinematic mass associated with material ow, and a

thermal mass associated with conductive ow of heat and entropy. Because entropy

and mass transport change with time and position, these components of the total

mass are not conserved individually.

However, since the constancy of � is only an approximate result of the Grad's

theory and the entropy source sign does not a�ect the approach, one may spec-

ulate whether the constraint on the thermal mass may be more relevant that on

the entropy. This is actually equivalent to the hypothesis that the thermal mass is

a basic entity, and its source �0s can replace the entropy source �s. This statement

may seem drastic, but it is actually not. The basic constraint in any action formu-

lation for an equilibrium uid is that of mass balance because the Euler equation

and the tensor of matter emerge the same whether or not the entropy s is changed

in the action �. In the irreversible case, with a source, the e�ectiveness of the

entropy constraint is not well established; there is no proof that a thermal mass

constraint with a source must be less e�ective than standard mass constraints.

Quite generally balances of nonconserved mass (in chemical and nuclear reactions)

are at least as relevant as entropy balance constraints.

To achieve our goals we bring into the context of the thermal mass the �eld

Lagrangian � which we previously used in treating nonequilibrium entropy. Here,

it incorporates all balances of mass and identity with corresponding sources. Both

Lagrangian and Hamiltonian formalisms can be used, as in traditional frames

[59, 64]. As soon as the microscopic information is incorporated into � or H, fur-

ther analysis can be purely macroscopic, so that nontrivial, macroscopic de�nitions
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of heat, di�usion and viscous work follow as nonequilibrium e�ects caused by the

transport of the thermal mass in the uid frame. The energy density E arises as

a derivative-dependent quantity, or a sort of pseudo-thermodynamic variable. Yet,

one may show that the change of the representation, e.g., to that of entropy, makes

each new potential such a variable; this is an e�ect of di�erent equilibrium refer-

ence states in various representations. The related thermodynamic representations

are, however, transformable from one to another, demonstrating the equivalence

between diverse representations of the same nonequilibrium state [58].

A part of the paper is devoted to analysis of two kinds of hypotheses linking

the thermal mass with the entropy. The hypothesis postulating a �nite constant

� or the equivalence between the thermal mass and the entropy is the simplest; it

preserves the Clausius-Duhem inequality and main features of the usual entropic

description in an easiest way. Yet it has an advantage of direct evaluation of the

energy of the entropy ow as the kinetic energy of the thermal mass. On the

other hand, it is through the hypotheses that make use of variable � that new

dimensions can be added to our understanding of thermodynamics. With this belief

we analyze expressions relating the state of the system to the coe�cient � = �0s=�,

the thermal mass per unit of the entropy. Our discussion examines the quantitative

implications of both of these hypotheses, concerning what fraction of the total mass

of a uid should be attributed to its thermal mass. Some large di�erences appear.

While these should perhaps not be surprising, we want to stress that, due to the

approximate nature of the Grad's approach, even results from his relatively reliable

model may be only approximate (even if we do have the proof that they can always

obey the stringent conditions from equilibrium thermodynamics that link energy

and pressure, Section 9).

Our main result is a nonlinear theory of the thermal inertia in the energy repre-

sentation. We show that it is possible to quantify the inertial e�ects, organize their

systematic analysis, interpret them physically and compare a few of the available

hypotheses. In contrast to refs. [58] and [59] where analytical aspects of the u-

id �eld theory in the classical frames prevail, the physical reasoning which deals

with a thermal-mass frame is no less essential than the formal analysis. A sim-

ple �eld symmetry leads to a new conclusion so far undiscovered in the extended

irreversible thermodynamics (EIT): for any positive �s (Clausius-Duhem range),

a �nite thermal inertia, stemming from a �nite thermal momentum, causes neces-

sarily creation of what we call the thermal mass and disappearance of the so-called

bare mass. Our explicit treatment of the thermal mass should not be confused with

other approaches to the (dual) inertial e�ects in the entropy representation, which

can occasionally be related to the extremal behavior of the entropy [52, 65].
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2. De�nitions of Thermal Momenta, Bare Mass and Thermal Phase

For simplicity we restrict our discussion to systems of a single component or species.

Through the rest of this text it is assumed that the reader is familiar with our

earlier analyses of the traditional frame of the variables �, �s, u, us [58, 59]. As

the information gained so far shows [57 { 59, 66], there is no single obvious de�nition

to prefer for \thermal momentum". Rather, there are various thermal momenta,

at least from the formal viewpoint, de�ned as partial derivatives of a macroscopic

Lagrangian (or Lagrangian density) L with respect to the macroscopic velocity

of the entropy transfer, �s = @L=@us (ux Js and us = Js=�s), carried out

at a constant velocity of the matter and constant values of whatever densities

are the thermodynamic variables of L. One can also di�erentiate L with respect

to various di�usion velocities vs = us � u. One then obtains the corresponding

thermal momenta of di�usion.

The values of any such partial derivative depend very much on which remain-

ing thermodynamic variables of L are kept constant. The thermal momenta so

obtained actually constitute a sort of generalized momenta which depend on the

set of variables selected, as with the generalized momenta of mechanics. For the

development of a concept of thermal mass, it is essential that some special or

\canonical" momenta and corresponding densities (�m and �0s) exist and that the

e�ect of these densities on the momenta can be separated in the reversible case, for

L = L0. Since L0 has no explicit matter-�eld interaction term, only inherent iner-

tial terms a�ect these momenta, which are then the physical, kinetic momenta, as

distinguished from any generalized (canonical) momenta which may be dependent

on other factors.

Because of their separable kinetic momenta in the diagonal kinetic energy,

the canonical densities represent the distinctive physical entities, which yield the

\physical" momenta related to inertial behavior of these entities. As our diago-

nalizing of the kinetic part of the Lagrangian L0 (Grad's kinetic energy K) in

Section 6 shows, a state function �(�; �s) exists such that the densities of the ther-

mal mass, �0s = �s�, and the so-called bare mass, �m = � � �0s, can indeed be

separated in K. The thermal mass and the bare mass are then the \canonical enti-

ties" and the partial derivative of L0 with respect to the absolute transfer velocity

us becomes the absolute, \physical" thermal momentum (that of L0 with respect

of the relative velocity us � u become the physical thermal momentum of di�u-

sion). Only after diagonalizing of K is completed one can �nd the density of the

thermal mass, �0s, as the ratio of ps = @L0=@us to us, where us and ps are the

absolute values of us and ps. Hence the fraction attributed to the thermal mass in

the total, observable mass of the uid which has the density � equals f = �0s=�. For

the uid composed of the particles of mass m, the thermal mass per single particle
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is ms = fm = �0sm=� = �sm, where s is the speci�c entropy and � equals �0s=�s,

the thermal mass per unit of the entropy. The units of �s and �0s are respectively

the entropy density and the mass density; for any model of a constant � the density

�0s is simply the entropy density expressed in mass units.

When the fraction f of the total mass attributed to the thermal mass is known,

the supplementary fraction (1 � f) may be called the \bare mass fraction" of the

medium. The properties of the bare mass are here designated with the subscript

m. Since the sum of the (\partial") momentum density of the bare mass and

that of the thermal mass yield the total momentum density or the mass ow,

ps + pm = � = �u, (Sect. 11), the total ow can be written in terms of the

thermal mass and bare mass properties as �u = �0sus +�mum, where � = �0s +�m.

This means that the hydrodynamic velocity, an observable, acquires the de�nition

u = fus+(1�f)um using the fraction of the total mass attributed to the thermal

mass in the uid. The hydrodynamic velocity is, of course, the mean velocity of

the center of mass whereas us � u and um � u represent the di�usion velocities

of the thermal mass and the bare mass in the barycentric frame. The entropy ux

js = �s(us � u) is related to the heat ux jq = T js; the bare mass ux, to the

barycentric self-di�usion. This explains equations (1) and (2) used in analysis which

follows, as the relevant de�nitions. Since there is no assurance of the equivalence of

the thermal mass and the entropy, the index s labelling the thermal mass-related

quantities should be understood as \a quantity related to the entropy" rather than

\the quantity uniquely determined by the entropy".

In the action functional A, the Lagrange multiplier, �, of the traditional entropy

balance is the velocity potential of irrotational entropy paths and, at the same time,

the Lagrangian action of the entropy transferred [59, 60, 62]. It has been postulated

that �, called briey the thermal phase, is relevant to describe irreversible process-

es via an action formalism. Its thermal-mass-frame counterpart is designated here

by �0; the thermal mass multipliers are related to the corresponding entropy mul-

tipliers, modulo the factor ��1. Exploiting our earlier conclusion that the balances

of nonconserved mass are at least as relevant as the entropy balance constraint

(also supported by limitations on the basic nature of Clausius-Duhem inequality),

we have adopted here the approach which imposes that constraint on the thermal

mass balance rather than on the entropy. Our associated formal argument is a

selfconsistent nonlinear analysis (Sects. 5 and 6) which shows that the traditional

frame using the entropy (\entropy frame") and the thermal mass frame can always

be transformed one into another. This leads to the second law in a particular form,

where, thanks to the nonlinear transformations, eqs. (11) and (22 { 25), it mani-

fests itself through the source of the thermal mass rather than the entropy. The

equivalence of the two descriptions follows from the invariance of the variational

principle in various representations, in particular in the classical representation
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with the entropy source and a \canonical representation" with the source of the

thermal mass.

3. Towards Compatibility with Classical Kinetic Energy

Let us summarize the consequences of the �nite thermal momentum. The bare

momentum density of the matter, pm, is the total momentum density � with the

thermal part ps subtracted. The density pm is such that pm = ��ps = �u�ps is

associated with a bare mass density �m = pm=um, where the bare mass properties

�m and um obey the transformations

� = ��s + �m = �m ; (1)

�u = ��sus + �mum = �0sus + �mum : (2)

The multiplication of �s by � transforms the entropy density into mass units. Var-

ious hypotheses may lead either to � constant or to � being a function of state.

Having �0s = ��s enables one to treat the thermal mass as the zeroth compo-

nent, with an e�ective mass density �0s. In this work we search for a hypothetical

\equation of state" linking �0s with classical variables �s and �,

�0s = �(�s; �)�s ; (3)

and consistent with the kinetic energy K having \diagonal" structure:

K =
1

2
��su

2
s +

1

2
�mu

2
m =

1

2
�0su

2
s +

1

2
�mu

2
m : (4)

Within the thermal mass context, the form (4) can be justi�ed by relativistic

theories for low velocities [67, 68]. We determine the state function �(�; �s) in

Sect. 6 and show that for the Grad's solution of Boltzmann equation it has the

form of eq. (19), provided of course that no limitation is imposed on the constancy

of �. We also show that while �(�; �s) is consistent with eq. (4), the di�culties

arising from its variability lead to applying � as a pseudo-constant multiplier of

the entropy source instead of using a rigorous transformation, eq. (11). Otherwise,

we develop a nonlinear theory of the state transformation from the entropy frame

to the thermal mass frame, still preserving the well-established thermostatics and

hydrodynamics. We observe that the \natural" variables of the internal energy are

changed by the �niteness of �. Yet, one still obtains an equivalent thermophysics

with the same tensor of matter (Sects. 9 { 11).
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4. Trivial Intrinsic Symmetry: Conservation of Total Mass Versus

Nonconservation of Thermal Mass

The passage from the conventional frame (thermodynamic or entropy frame) to the

frame of thermal mass involves not only transformation of �s into �0s = �s�(�s; �)

but also the replacement of the total mass density � by the density of the bare mass

�m = � � �0s; this is nontrivial even if � is constant. Applying our entropy-frame

technique [59, 68] to construct a kinetic potential L for processes with sources, an

irreversible L of the thermal mass frame is

L = K(�0s; �m;us;um)� �e(�
0

s; �m) � �0s�
0

s � �m�m ; (5)

where K(�0s; �m;us;um) is the diagonal kinetic energy, eq. (4). The phase variables

�0s and �m, the Lagrange multipliers of the related mass balances, eqs. (8) and (9),

are the thermodynamic adjoints of sources �0s and �m.

The total mass must of course be conserved, so that any change of the thermal

mass �0s must be compensated by that of the bare mass, �m. This e�ect manifests

itself as a trivial, global symmetry of the action A: namely, A should be invariant

with respect to a common shift of all phases (�0s and �m) by the same quantity �,

�0s ! �0s + � and �m ! �m + � : (6)

This leads to the invariance condition of L with respect to eq. (6) in the form

� �(�0s + �m) = 0 (7)

or �0s = ��m that any source of thermal mass must be compensated by a sink of

equal strength. An alternate form of (7) is the global equation of continuity (10).

It follows when one adds the extremum conditions of the action A with respect

to the phases �m and �0s. This action uses L of eq. (5) and contains the product

of the total time derivatives of the phases and densities as in eq. (31). One thus

obtains the balance equations for the thermal mass and bare mass

@�0s
@t

+r � (�0sus) = �0s ; (8)

@�m

@t
+r � (�mum) = �m : (9)

Since the symmetry of A imposes �0s = ��m, from eqs. (1) and (2) the sum of the

eqs. (8) and (9) is sourceless, so the total mass is indeed conserved:

@�

@t
+r � (�u) = 0 : (10)
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Thus global mass conservation may be regarded as a consequence of the trivial

symmetry of the action with respect to the simultaneous shift of all the phases.

The purpose of this simple analysis is to stress that the conditions (7), (10), and

(6) with dA = 0 are all equivalent, regardless of which is used.

5. Hypotheses Relating Conversion of Bare Mass into Thermal Mass

Eq. (8) can strictly be equivalent to the standard entropy balance only if � is a

constant. This observation is consistent with the one or few hypotheses associated

with de Broglie microthermodynamics [69 { 71] which link the entropy generation

with the creation of thermal mass (entropy) within his \piloting wave", and the

consequent necessity of attenuating the bare mass. The case with a constant �

can also be related to Veinik's [72, 73] hypothesis of elementary thermal quanta,

particles of discrete entropy, which he measures in terms of the entropy of a single

photon of the black body radiation. The entropy of blackbody photons is normally

taken to be a state-independent constant per photon, see, e.g., Landau [74]. Away

from blackbody equilibrium, when the isotropy of photons may be lost and the

chemical potential is nonvanishing [75], the entropy per single photon ceases to be

a constant, but Veinik's measure is still the black photon entropy. Di�erent choices

among these hypotheses may give di�ering numerical values of �, and di�erent

physical interpretations of the equivalence of the thermal matter with the entropy,

but they lead to the same formal model. However � is a variable function rather

than a constant for the Grad-Boltzmann model; which makes it di�er from the

others.

For the hypothesis based on the Grad's approach the source of thermal mass,

�0s, is not equivalent to that of the entropy, cf. eq. (11). Since the real changes

of state are seldom large, an averaged � instead of the instantaneous � can be

applied with some care. Yet, in order to preserve the strictly equivalent pictures, it

will be necessary to apply an approach involving nonlinear transformations (eqs.

(11) and (25) { (28), for Grad's model) within which the entropy picture and the

thermal mass picture remain two di�erent, complementary formalisms describing

the Clausius-Duhem theory.

Using �0s = �(�s; �)�s in eq. (8) yields in the traditional frame

�s = ��1
n
�0s(�; �s;r�;r�s;u;us) � �s

h @�
@�s

(
@�s

@t
+ us � r�s) +

+
@�

@�
(
@�

@t
+ us � r�)

io
; (11)

where �0s is the known thermal mass source transformed from the canonical frame

of the mass variables (�0s; �m;us;um) to the conventional frame of the entropy
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density (�s; �;us;u). Inversely, in the canonical frame

�0s = ��s + �s

�@�
@t

+ us � r�
�

= ��0s(�m; �
0

s;r�m;r�
0

s;um;us) + (11a)

+ ��1�0s

h @�
@�0s

�@�0s
@t

+ us � r�
0

s

�
+

@�

@�m

�@�m
@t

+ us � r�m

�i
;

where �s is the known entropy source (e.g., the sum of the two dissipation func-

tions, � + 	) transformed from the conventional frame to the canonical frame.

Eq. (11a) determines �s(�s; �;us;u) from �0s(�
0
s; �m;us;um) known as the mass-

frame solution of the variational problem involving eq. (5). Conversely, eq. (11a)

yields �0s(�
0
s; �m;us;um) from �s(�s; �;us;u) known as the variational solution in

the conventional frame. These formulae are exact, so long as the relaxation times

of the system are fast enough that the state functions exist. (An independent way

of constructing the dissipative potentials in a de�nite frame is through squaring

equations of dissipative kinetics [65].) Any changes (or simpli�cations) in eqs. (11)

or (11a) imply relaxing the equivalence requirement between the two formalisms.

These changes can nonetheless be of interest as leading to possibly improved, inde-

pendent theory.

The three hypotheses for the thermal mass are di�erent from the physical view-

point. The constant-� hypotheses, which operate with L having any instantaneous

� in eq. (4), are perhaps the most elegant from the esthetic viewpoint but they

are physically very exotic. They imply the entropy source is associated with the

\dissolving-like" or \shrinking-like" behavior and ultimate disappearance of the

bare matter into a \bath of inde�niteness" occupied by the thermal mass, identi�ed

here with the entropy, implying constant �. This is consistent with the de Broglie

hypothesis which identi�es the entropy apart from the elementary particle; rather,

it is attributed to the surrounding bath or to its \piloting wave" as a \subquan-

tum" environment. De Broglie treats his �c2 as an intrinsic temperature of micro-

objects and atoms at rest. Constant-� hypotheses are also compatible with Veinik's

idea of heat particles (particles of a thermal matter) equivalent in some sense to

the entropy. These hypotheses postulate in fact an equivalence principle between

entropy and matter characterized by a universal constant �.

On the other hand, the third hypothesis, based on the nontrivial constitutive

equation, �0s = �(�s; �)�s, consistent with the Grad's approach, disallows any seri-

ous identi�cation of the thermal mass with the entropy while still admitting a link

between these two entities. As eq. (19) shows, Grad's function �(�s; �) grows with

the speci�c entropy s or temperature T in the range of low s, but it decreases with

s or T at constant � in the range of high s. For the ideal hard-sphere gas, �(s)

is presented on Fig. 1. Thus, the link between the thermal mass and the entropy

in the Grad-Boltzmann model is weaker than in the two previous hypotheses, as
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Fig. 1. Comparison between inertial coe�cients � for various hypotheses of thermal inertia

the positivity of the source �0s is not assured by this model. Grad's thermal mass

seems thus to be a di�erent entity than the entropy, yet still fundamental as that

quantity explaining and quantifying the inertia of the heat ow. To preserve a

�nite entropy source, this thermal mass must be nonconservative so long as a

signi�cant plateau region surrounding the maximum of � in Fig. 1 excludes any

compensation of �s by the e�ect of �sd�=dt (eq. 11) in a �nite regime. Whenever

�s is positive, the thermal mass must be created at least in the plateau region

of the Grad-Boltzmann �. Therefore the most legitimate statement regarding this

model at the present time is that already made for the models of constant �: it

implies a nonconservative thermal mass.

The power of any variational formulation lies in its applicability to arbitrary

nonlinear transformations. Hence any cases of variable � are manageable by the

theory if only appropriate data are known. However, since our present knowledge

of the dissipation expressions is only approximate, in the presence of sources the

equivalence of the two descriptions is as a rule met only approximately, associated

with applying � as a pseudo-constant. The frictional nature of the mass-frame

dissipation and results obtained from linear analyses may help us to work out

e�ective models for �0s. Until this problem is resolved, one must be content with

only approximate expressions of the averaged type, obeying �0s = ��s. It is the

plateau on Fig. 1 which allows assumption of constant � for Grad's model over
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quite a broad range of the term sg1=2 (surroundings of the extremum point � =

sg1=2 = 1).

6. Evaluation of Inertial Function �(�s; �) from Grad's Approach

In order to �nd �(�s; �) compatible with Grad's solution, the diagonal structure

(5) is transformed to operate with the conventional variables �;u; �s and us. Sub-

stituting into K, eq. (4), the bare mass velocity um expressed as

um = (�u� �0sus)(�� �0s)
�1 (12)

yields

K =
1

2
�0su

2
s +

1

2
(�� �0s)

�1(�2
u

2
� 2��0suus + �02s u

2
s) (13)

which leads to the quadratic form

K =
1

2
��0s(�� �0s)

�1
u

2
s +

1

2
(�� �0s)

�1�2
u

2
� ��0s(�� �0s)

�1
uus : (14)

After de�ning the density of the hydrodynamic kinetic energy K0 = 1=2�u2,

eq. (14) can be transformed into a form separating the hydrodynamic and dif-

fusional components of K

K =
1

2
�u2 +

1

2
��0s(�� �0s)

�1
u

2
s +

1

2
(�� �0s)

�1�0s�u
2
� ��0s(�� �0s)

�1
uus : (15)

The nonequilibrium contribution to the kinetic energy contained in eq. (15) includes

the square of the relative di�erence of velocities

k� =
1

2
(�� �0s)

�1�0s�(us � u)2 (16)

or, when written in terms of the conventional variables

k� =
1

2
(�� �(�; �s)�s)

�1�(�; �s)�s�(us � u)2 : (17)

This is of course the same structure as the result for kg known from the nonequlib-

rium statistical mechanics of heat transfer (Grad's [1] solution of the Boltzmann

equation in the variables �;u; �s and us, [58])

kg =
1

2
�2
s�

�1g(�; �s)(us � u)2 (18)

where g is the inertial coe�cient in Grad's expression for the nonequilibrium inter-

nal energy. Under the relaxation time approximation of the Boltzmann equation,
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g = 2=5m2=k2
B for the ideal hard-sphere gas. By deriving eq. (17) we have shown

that the kinetic energy of the Grad uid is diagonal in the variables �m and

�0s = ��s for � obeying eq. (19). This proves that �m and �0s are canonical variables

in which the kinetic energy is as simple as it can be. By orthogonal transforma-

tions of the spatial coordinates in eq. (4), other canonical densities and velocities

could be constructed but then the simple physical interpretation of the variables

(�m; �
0
s;um;us) would be lost. Therefore we restrict ourselves to these canonical

variables. Eqs. (17) and (18) di�er only by the functions g(�; �s) and �(�; �s) which

they use. On comparing (17) and (18) the relation between these functions can be

found as

�(�; �s) =
�s�g(�s; �)

�2 + g(�s; �)�2
s

=
g(s; �)s

1 + g(s; �)s2
(19)

or

g(�; �s) =
�2�(�s; �)

�s(�� �(�s; �)�s)
=

�(s; �)

(1 � �(s; �)s)s
(20)

Note that both forms become implicit in the \canonical" variables �s, and �m,

when g is variable, the fact which determined the direction of our transformations.

However, when g is constant (ideal gas) an explicit form for � in terms of canonical

variables easily follows,

�(�m; �
0

s) = (g�0s�m)1=2(�0s + �m)�1 ; (21)

corresponding with the functions

�s(�
0

s; �m) = (g�m=�
0

s)
�1=2(�0s + �m) and �(�0s; �m) = �0s + �m :

Now we can collect the relevant formulae and summarize the results. We make

the following nonlinear transformation of the canonical variables (�0s; �m;u
0
s, and

um), in which the total kinetic energy density is diagonal, into the traditional

physical variables (�s; �;us and u):

�0s =
�2
s�g(�s; �)

�2 + g(�s; �)�2
s

(= �s�(�s; �)) ; (22)

�m = ��
�2
s�g(�s; �)

�2 + g(�s; �)�2
s

(= �� �s�(�s; �)) ; (23)

um =

 
�u�

us�
2
s�g(�s; �)

�2 + g(�s; �)�2
s

!, 
��

us�
2
s�g(�s; �)

�2 + g(�s; �)�2
s

!
; (24)

u
0

s = us : (25)

This transformation takes the canonical kinetic potential (5), with its diagonal K,

into the kinetic potential of Grad's theory or the sum of the hydrodynamic kinetic
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energy K0 = �u2=2 and the nonequilibrium energy k�(�s; �;us;u), eq. (17), for �

given by eq. (19), thus leading to Grad's eq. (18). See Sect. 10 for the transforma-

tion of the corresponding velocity potentials (phases).

With this result, one can investigate the extremum conditions for the simplest

K in the canonical thermal mass frame and then pass to the conventional vari-

ables (entropy frame) or conversely. We observe that with nonzero � or g the usual

thermodynamic variables are not the canonical variables of the kinetic energy,

although they still are the most popular variables of the internal energy. While the

results with the Grad approach and hence the speci�c transformations are approx-

imate, the methological bonus stemming from K being diagonal is consequential

because of the ease of embedding the canonical L's into various complex physical

contexts, when, e.g., generalizing them to the relativistic L's or quantizing the

related Hamiltonians. A reversible relativistic theory of the thermal inertia has

been constructed in our complementary paper [78].

7. Behavior of � Under Various Hypotheses

Once the relation between the functions g(�; �s) and �(�; �s), eqs. (19) and (20),

is known, �(�; �s) can be used to estimate the order of magnitude of the inertial

e�ects. The function �(�; �s) of an ideal hard-sphere gas depends actually on the

single variable s = �s=�, or the dimensionless variable � = sg1=2, Fig. 1. It exhibits

a maximum at s obeying the condition (@�(�; s)=@s)� = 0. Fig. 1 depicts properties

of � corresponding to various hypotheses. For small s (low T at a constant �), the

function �(s) of Grad's approach is linear; � = gs = (2=5)(m=kB )2s, for an ideal

hard sphere gas with g = 2m2=5k2
B . For large s the function � decreases with s;

�(s) = s�1. Thus, in this model, while the thermal mass goes up with the entropy,

the thermal mass per unit of entropy does not, at high entropies. Eq. (19) yields the

limiting entropy S� = g�1=2 = (5=2)1=2kB=m at which the low-s range terminates.

For the ideal gas the maximal � = (1=2)g1=2 , i.e. it equals about (1=3)m=kB . This

value of � de�nes the maximal thermal mass per unit of entropy, in this model.

This maximum can be compared with the de Broglie value � = m=kB [67 { 71].

A comparison of average values of � would emphasize the di�erences since the

average values of � of the Grad approach are about one half of the maximal �, i.e.

they are of the order of (1=6)m=kB . These discrepancies can be ascribed to the

nature of de Broglie's hypothesis as his � = m=kB seems merely a limiting quantity

corresponding with states of su�ciently high T , when all the observed mass is

thermal. (See also the discussion of the fraction of the observed mass assignable as

thermal mass in the next section and Fig. 2.) Yet that hypothesis fosters the idea of

an equivalence between the entropy and matter which justi�es deeper exploration
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Fig. 2. Fraction of the thermal mass in the total mass for various hypotheses of thermal inertia

because, in that mode, the correspondence between dynamic and static pressures

is always unambiguous [67, 68]. Operating with general models of a variable �,

(e.g., a derivative-dependent � in which the direct correspondence between the

two pressures may cause problems), one might use a constant, averaged value for

� = �, obtained by averaging eq. (19). Such a � would be the order of (1=3)m=kB
rather than de Broglie's � = m=kB .

Nonetheless, a value close to (1=3)m=kB could be preferred on the basis of a dif-

ferent concept. Were one to accept Veinik's [72, 73] idea that an elementary entropy

S
� exists, one would de�ne the limiting � as the constant coe�cient equal to

m=S� . Then, with his concept that S� should be equal to the (state-independent)

entropy of a single photon of the black body radiation, S� = 3:6kB , one evaluates

� as equal to m=S� = (1=3:6)m=kB which is close to the maximal value of the

Grad-Boltzmann theory.

While a de�nitive statement regarding a best choice of � cannot yet be made,

there is no doubt now that a nonvanishing � leads to a more physical picture of the

uid motion than � = 0, because it eliminates the paradox of in�nite propagation

speed of thermal disturbances. With this model, the thermal waves propagate

with the �nite speeds c0 = (T=g(�)cp)1=2, or, for ideal gas, (kBT=m)1=2; hence any

values of � of the order of m=kB are physically plausible, as the signal speed is
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then of the order of the mean thermal velocity. For the role of � in the de�nition

of nonequilibrium temperature, see [57, 67, 68].

8. Fraction of Total Mass Attributed to the Thermal Mass

The problem of thermal inertia is far from closed. As distinguished from Fig. 1,

Fig. 2 depicts the thermal mass per unit of total or measurable mass of the ideal

gas, or the fraction f = ms=m. In terms of the macroscopic quantities, f = ��s=� =

�s. The corresponding fraction of the bare mass is then 1�ms=m or 1��s. The \red

herring" of the constant-� hypotheses is their counterintuitive implication: f can

achieve a value of unity for a �nite, su�ciently large, speci�c entropy s = s� = ��1

where the whole mass becomes thermal, and then, for s larger than s�, the fraction

attributed to the thermal mass within the total mass becomes larger than unity so

the corresponding fraction of bare mass becomes negative. This may suggest that

the constant-� hypotheses break down, or, if one admits an eccentric interpretation,

that the particles comprising the bare matter become particles of negative energy.

For the de Broglie hypothesis the limiting s� = ��1 = kB=m, (limiting �� =

g�1=2kB=m = 0:632). For the Veinik hypothesis, s� is about 3:6kB=m (�� = g1=2s�

is about 2.275). These e�ects might perhaps be not such a surprise for quantum

theories where antiparticles may exist. However, we surely cannot discuss this issue

seriously in terms of the simple, classical, phenomenological description used here.

Therefore, we only stress that for �s > 1, or for s > ��1, or for the dimensionless

� > s�g1=2, the constant-� hypotheses must allow one of the entities, the thermal

or bare mass, to become negative.

On the other hand, in Grad's model, the fraction of the total mass assignable

as thermal mass is always less than unity. From eq. (19) for an ideal gas

�kB=m =
�

1 + �2

r
2

5
; f = �s =

�2

1 + �2
; (26)

where � � g1=2s = (2=5)1=2sm=kB . The fraction f obviously approaches the unity

in the limit of very large s. Thus, in this model the whole mass becomes the

thermal mass, for very large speci�c entropy. A generalization of these (ideal gas)

data is possible via a generalized inertial coe�cient g of the real uids: g(�; �s) =

T�(cpG)�1 [34]. Here, cp is the speci�c heat and G is the shear modulus which

simpli�es to the pressure P in the case of the idea) gas. For this ideal case our

g(�; �s) simpli�es to g = 2=5m2=k2
B . Since the fraction f = s�, then, using eq. (19)

leads to the following expressions for the thermal and bare masses, ms and mm,

contained in the single particle that has the total mass m:

ms

m
=

s2T�=Gcp

1 + s2T�=Gcp
;

mm

m
=

1

1 + s2T�=Gcp
: (27)
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They imply that practically the whole mass becomes thermal at su�ciently high

T 's and constant volume. These masses (27) correspond to the reversible momenta

msus and mmum per particle, whose sum is mu. Their multiplication by the

number density, n, yields the hydrodynamic momenta �0sus, �mum and �u. These

momenta and densities are believed to be the physical quantities, whereas the

pertinent derivatives of the kinetic potential L0 with respect to various velocities

related to us and um, obtained when arbitrary state variables are kept constant,

play the role of the generalized momenta.

In short, we admire the Grad's model of � because: a) it avoids the strange e�ect

of a negative bare mass at high T , b) it agrees well with experiments of thermal

conductivity and c) its transformation equations convert the thermal conductivity

model into a natural frictional model of the thermal mass di�usion. From the

viewpoint of these criteria the constant-� models are more restrictive. This does

not free us from concerns about this model since its compatibility with statics is

not obvious in the range of the variable �. The corresponding test is performed

below.

9. Compatibility with Statics and Invariant Properties of Pressure

Let us compare the Gibbs equation of classical thermostatics with its transformed

counterpart dealing with the canonical (mass) variables:

d�e(�s; �) = Td�s + �d� = Td(��1�0s) + �d(�0s + �m)

=
�T
�

+ ��
T�0s
�2

@�

@�0s

�
d�0s +

�
��

T�0s
�2

@�

@�m

�
d�m

� �sd�
0

s + �md�m : (28)

This equation stems from the invariance of the internal energy in the two frames. Its

second line de�nes the equilibrium canonical intensities: the chemical potentials of

the thermal mass and of the bare mass, �s, and �m. For the hypotheses of constant

�, �m equals the standard chemical potential �, whereas �s equals T=� + �. (For

these hypotheses one could also use the \thermal potential" T 0
� ��s, a sort of

canonical temperature, equal T + ��). In the mass frame the intensities �s, and

�m replace the standard intensities T and � of the conventional description of

equilibrium. As in the entropy frame [59], the mass phase variables �0s and �m, the

Lagrangian multipliers of the mass balances (8) and (9), do play an explicit role

in dissipative processes.

From eq. (21), in the mass frame, Grad's variable � obeys:

�0s
@�(�m; �

0
s)

@�0s
+ �m

@�(�m; �
0
s)

@�m
= 0 : (29)
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Correspondingly, the equilibrium pressure function in this frame, or the appropri-

ate Legendre transform of �e, is una�ected by the variability of �:

P 0 =
@�0e
@�0s

�0s +
@�0e
@�m

�m � �0e = �s�
0

s + �m�m � �0e(�
0

s; �m)

=
�T
�

+ ��
T�0s
�2

@�

@�0s

�
�0s +

�
��

T�0s
�2

@�

@�m

�
�m � �0e(�

0

s; �m) (30)

=
T

�
�0s + �(�0s + �m) � �0e(�

0

s; �m) = T�s + ��� �e(�s; �) = P :

Together with the invariant nature of the internal energy, this �nding also proves

that the enthalpy h is another invariant. Thus, while the usual intensities T and �

become only auxiliary variables in the mass frame, the statics of the mass frame

is compatible with that of the entropy frame.

Moreover, one can extend the result (30) to the dynamic situation by determin-

ing the extremum value of the �eld Lagrangian in the mass frame

� = K(�0s; �m;us;um) � �e(�
0

s; �m)� (�0s � �m)�0s � �m

�@�m
@t

+ um � r�m

�
+

� �0s

�@�0s
@t

+ us � r�
0

s

�
� m

�@�m
@t

+ um � r�m

�
� 0s

�@�0s
@t

+ us � r�
0

s

�
:(31)

This includes the diagonal kinetic energy (4) and the kinetic potential (5). The

equality �0s = ��m has been used to eliminate the source of the bare mass from

eq. (5) so that now only the thermal mass source is explicit. We take  and �, as

identity variables which preserve any nonvanishing vorticity of velocity �elds. We

do not discuss them here since they behave like their entropy-frame counterparts

[59].

Substituting into eq. (31) the extremum conditions of � in the form of the

related Euler-Lagrange equations, one obtains with eq. (28) the extremal � in the

form of the Legendre transform, generalized from that of eq. (30),

�0 = L�
�L

��0s
�0s �

�L

��m
�m = L+ �s�

0

s + �m�m

= L+
�T
�

+ ��
T�0s��0s
�2

�

u
2
s

2
+ �0

��0s
��0s

�
�0s +

�
��

T�0s��m
�2

�

u
2
m

2
+ �0

��0s
��m

�
�m

=
T

�
�0s + �(�0s + �m) � �0e(�

0

s; �m) + �0
��0s
��0s

�0s + �0
��0s
��m

�m � �0�0s

= T�s + ��� �e(�s; �) � �0��0s = P � ���s = � : (32)

Here �0 = �0s��m is the relative thermal mass phase and ��0s is the Legendre trans-

form of the thermal mass source �0s. The deviation of the pressure from equilibrium
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is the second viscosity e�ect. Note that the invariance of the product �0�s�0 = ���s
which describes that e�ect follows directly only for constant-� hypotheses, whereas

the use of eq. (11) is necessary to prove this invariance if � is variable. In a nondis-

sipative ideal gas �0s and ��0s vanish and, even when � varies and the uid ows,

the extremum � again equals the equilibrium pressure P . This result is consistent

with the analysis of the ideal gas in the entropy frame (cf. eq. (67) of ref. [58]

for constant g). The same equilibrium and nonequilibrium pressures can thus be

obtained in both frames. These results, which prove the compatibility of Grad's

� with the well-established thermostatic tensor of matter, diag(�P;�P;�P; �c),

are crucial for working with the thermal mass of Grad's model. One may note

that analyses in the mass frame are as a rule easier than in the thermodynamic

frame.

10. Physics of Phases and Sources in Balance Equations

Because of their crucial role as generators of Legendre transformations, for the

thermodynamic compatibility of various frames, transformations of phases (e.g.

those of �m and �0s) associated with those of state are essential. They involve the

�eld Lagrangian �, eq. (31), rather than the kinetic potential L, eq. (5). Consider

the passage from the canonical frame (�m; �
0
s;um;us; �m and �0s), eq. (31), to the

entropy frame (�; �s;u;us and �). Using eqs. (11) and (12) in eq. (31) yields the

Lagrangian of the entropy frame

� = K(�s; �;us;u) � �e(�s; �) � ��s � �
�@�m
@t

+ u � r�m

�
+

� �s

�@�
@t

+ us � r�
�
� 

�@�m
@t

+ u � r�m

�
� s

�@�s
@t

+ us � r�s

�
: (33)

Here � = �(�0s � �m) is the relative phase of entropy [59], and the entropy source

�s is related to the thermal mass source �0s by eq. (11a). �s = �0s��m is the initial

velocity of the entropy ow and �0s itself corresponds to the absolute initial velocity

of this ow. Eq. (33), with the identi�cation �m = � and �m = � is the integrand

of the entropy-frame action [59] which preserves the usual thermodynamics and

the classical description of the heat ow. The production of the thermal mass in

the canonical frame leads in the conventional frame to the entropy production.

Eq. (33) proves that, if sources are present, it is actually the velocity potential of

the bare matter that has been eliminated, �m, not any \global" matter phase �,

whose variation yields the global continuity. This apparent peculiarity is in fact a

valid result which amends the interpretation of the velocity potentials � and �.

On the other hand one may describe the bare mass motion with respect to this

uid. � contains then the term { (�m � �0s)�m which de�nes the relative phase of
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the bare matter, ' = �m � �0s such that ' = ��=�. Substituting �0s = �� �m and

us = us(u;um) from eq. (2), into eq. (31), one �nds

� = K(�m; �;um;u)� �e(�m; �) � '�m � �m

�@'
@t

+ um � r'
�

+

� �
�@�0s
@t

+ u � r�0s

�
� m

�@�
@t

+ um � r�
�
� 

�@�s
@t

+ u � r�s

�
: (33a)

In this frame, the dissipation manifests itself through the sink of the bare mass; the

production of the thermal mass or entropy is only implicit. The equation for global

matter conservation follows now from variation of the action A with respect to the

absolute phase of thermal mass, �0s; otherwise the diminution of the bare mass is

governed by the relative phase, '. From eq. (33a), the phase of the eliminated

entity (here that of the thermal mass), �0s, has again acquired the role played by

the total matter phase (�) in a sourceless process, namely, it is the variation of �0s
which yields the global continuity.

Thus, the presence of sources leads to a subtle complication in the interpretation

of the velocity potentials (phases) of transferred entities, for both nonconserved and

conserved balances. \Bare" entities and their velocity potentials arise naturally,

and the relative phases, � or ', (the di�erences between the absolute phases and

the phase of the eliminated entity) yield balances of bare entities with sources.

Otherwise the variation of the phase of the entity that has been eliminated yields

the global continuity.

Interestingly, for the constant-� hypotheses, the equivalence of the entropy and

mass with a �nite constant �, identi�es the global matter density � with a density of

a global entropy,f�s = �=� = �m=�+�s, which is a conserved property. Conservation

of that entropy and the global mass should then be equivalent and this would

explain why the variation of the entropy phase �0s in eq. (33a) yields the global

continuity. The thermodynamic entropy should then be the bare, nonconservative

entropy, distinguished from the conserved global entropy whose density f�s includes

the entropy equivalent of the bare matter. Perhaps the notion of such generalized

entropy would explain some paradoxes noted for the dynamic entropies of the

contemporary theories [76].

11. Identity of Matter Tensor in Entropy and Mass Frames

The subsequent analysis proves that the two representations yield the same tensor

of matter. This, in particular, means that various partial momenta yield the same

physical momentum � = �u and other components of this tensor. We deal with

both the canonical kinetic potential L, eq. (5), and its conventional-frame counter-

part, eq. (34). For the two frames compared we display the role of the derivatives

ps = @L=@us, pm = @L=@um, and p = @L=@u.
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The entropy frame uses L in the variables �, �s, u, us, and �,

L =
1

2
�u2 +

1

2
(�2

s�
�1g � ��2

s�
�1)(us � u)2

� �e(�s; �) � � (x; t) �
1

2
�	(�; �s;r�;r�s) : (34)

It has the Onsager potentials incorporated (� and 	 terms of eq. (34); see also

eqs. (24) and (28) of ref. [59]). These dissipation potentials can be constructed in

a well-established way, via squaring dissipative kinetics [65]. �(�; �s) of eq. (19) is

implicitly present in g of eq. (34). (Note that the regime of a constant � is not that

of an ideal gas for which g = constant and � varies as in Fig. 1.)

In the canonical frame, �m, �s, um, us, �
0
s and �m, L takes the form

L =
1

2
�mu

2
m +

1

2
�0su

2
s �

1

2
(�0s � �m)�(�g)�1�0s�m(us � um)2 +

� �e(�
0

s; �m)� (�0s + �m) (x; t) �
1

2
(�0s � �m)�	(�m; �

0

s;r�m;r�
0

s) (35)

which is a working form of eq. (5). The function �(�m; �
0
s) is de�ned by eq. (21).

Eq. (11a) can be used to obtain the mass-frame source term, �0s, in eq. (35).

Squaring of the mass-frame di�usion kinetics can also be used to construct the

dissipation potentials [65].

In the traditional frame, eq. (34), the partial generalized momenta are

p(�; �s;u;us; �) =
�@L
@u

�
�;�s;us

= �u� (�2
s�

�1g � ��2
s�

�1)(us � u) ; (36)

ps(�; �s;u;us; �) =
� @L
@us

�
�;�s;u

= (�2
s�

�1g � ��2
s�

�1)(us � u) : (37)

From N�other's theorem the total momentum density � equals to the sum p + ps

which yields the mass ow, � = �u, as the total momentum density.

In the canonical (mass) frame, eq. (35), the partial momenta are

pm(�m; �s;um;us; �) =
� @L

@um

�
�;�s;us;�

= �mum + (38)

+ (�0s � �m)�(�g)�1)�m�
0

s(us � um) ;

ps(�m; �s;um;us; �) =
� @L
@us

�
�;�s;us;�

= �0sus + (39)

� (�0s � �m)�(�g)�1)�0s�m(us � um) :

The governing dissipative e�ect in the mass frames is friction; note the frictional

structure of the dissipative terms. N�other's theorem implies again that the total

density � equals the sum of the above derivatives; consequently � = �u again.

Clearly, the partial momenta, including the thermal momenta, di�er in the two
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frames; nonetheless they always yield the same physical quantity �. This momen-

tum density is an invariant of thermo-hydrodynamic transformations applied at a

�xed point of the space-time.

A particularly transparent example is the reversible canonical case (�0s = 0)

when the phase �ys is not explicitly present in L and the simplest canonical momenta

appear, pm = �mum and ps = �0sus, pertaining to the absolute velocities of the

bare mass and thermal mass. In this case each of these momenta is proportional

to the corresponding ux and the equality � = �u follows in the simplest way

possible. According to Sect. 2, these expressions are believed to represent the

physical kinetic momenta of thermal mass and bare mass.

The invariance property also holds for the remaining components of the tensor

of matter: the energy E, the stress tensor T , and the energy ux Q, as well as for

any state function of thermo-hydrodynamics. From the common formula

E =
X
l

@L

@ul
� u

l
� L ; (40)

the same N�other's energy function is obtained in both descriptions. In a general

irreversible case and with canonical variables used,

E =
1

2
�mu

2
m +

1

2
�0su

2
s + �e(�

0

s; �m) + (�0s + �m) (x; t) +

� (�0s � �m)�((�g)�1�0s�m(us � um)2
�	(�m; �

0

s;r�m;r�
0

s)) : (41)

The �rst line of this equation represents the classical \reversible" energy whereas

the terms in the second line together represent the contribution of the relative

thermal phase � = (�0s � �m)�. This term contains the negative product of � and

the di�erence between the two Onsagerian dissipation functions, the di�erence

sometimes called the thermodynamic Hamiltonian [77]. In a limiting situation,

when the phase � has no e�ect (or \does not enter") and the Fourier's law holds

(� = 	), only the �rst line of eq. (41) plays a role. Such a truncated formula

corresponds to the reversible momenta �0sus and �mum. In this limit the energy

density E is una�ected by the dissipation.

For an arbitrary L the N�other's theorem yields as the energy ux

Q = um

�
um �

@L

@um
� �m

@L

@�m

�
+ us

�
us �

@L

@us
� �0s

@L

@�0s

�
: (42)

Hence for L of eq. (5),

Q = us

h
ps � us +

�T
�

+ ��
T�0s��0m
�2

�

u
2
s

2
+ �0

��0s
��0s

�
�0s

i
+

+ um

h
pm � um +

�
��

T�0s��0s
�2

�

u
2
m

2
+ �0

��0s
��m

�
�m

i
; (43)
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with �0 = �0s��m. As the general formula for Q is complex, in this case we restrict

our compatibility test to the limiting phaseless situation. Then

Q = us�
0

s

�T
�

+ ��
T�0s��0s
�2

+
u

2
s

2

�
+ um�m

�
��

T�0s��m
�2

+
u

2
m

2

�
: (44)

Introducing into the above formula the di�usion velocities of the thermal mass

and bare mass, vs = us � u and vm = um � u, and the related di�usion uxes,

j
0

s = �0svs and jm = �mvm one can distinguish expressions describing the power

of the nonequilibrium stresses, w, and the heat ux, q. The power w obeys

w = � � u+ v2
sj

0

s + v2
mjm = �s � us + �m � um (45)

corresponding with the total nonequilibrium stress � = �mvmvm + �0svsvs or the

sum of the partial stresses accompanying di�usion of the thermal mass and the

bare mass, �s = �0svsvs and �m = �mvmvm. Associated with the power w is a

mass-frame formula for the heat ux

q =
�
�

�L

��0s
�

1

2
v2
s

�
j
0

s +
�
�

�L

��m
�

1

2
v2
m

�
jm

�

�T 0

�
�

1

2
v2
s

�
j
0

s + (�0 �
1

2
v2
m)jm

=
�T
�

+ ��
T�0s��0s
�2

�

1

2
v2
s

�
j
0

s +
�
��

T�0s��m
�2

�

1

2
v2
m

�
jm : (46)

Hence

q = [T (1� ��s�
�1
m ��0

s

)�
�

2
(j2

s�
�2
s � �2j2

s�
�2
m )]js = eT js ; (47)

where eT is the kinetic temperature introduced in ref. [58] in the conventional

frame. The reduction of the chemical potential in eq. (46), which occurs because

j0s + jm = 0, is crucial for preserving the form q = eT js. While the de�nition (45) is

in the mass context more relevant than the classical stress work � � u, the sum of

the heat and work remains independent of their de�nitions. Thus, the �nal formula

for the total energy ux density is the same as that obtained in the conventional

frame,

Q = �u
�u2

2
+ h +

�m

2�
v2
m +

�0s
2�
v2
s

�
+ q +w : (48)

The fact that the same tensor of matter G is hosted in various frames is important

in general relativity where (the relativistic) G is the unique source of the same

gravitational �eld generated in mass frames and entropy frames.

12. Concluding Remarks

Two general kinds of speci�cation of the thermal mass have been discussed here.

One kind is made to satisfy the approaches hypothesizing the constancy of thermal
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mass per unit of the entropy, �. The other general approach supposes the variable

� to be consistent with the Grad-Boltzmann theory. Yet, it is the existence of a

signi�cant plateau in the formula for � based on Grad's solution which allows us

to treat the entropy as a direct, approximately linear measure of the thermal mass

for a reasonably broad range of state changes.

If intrinsic symmetries and �niteness of the thermal momenta are then required,

one must admit creation of thermal mass from the bare mass of particles, in order to

preserve global conservation of matter. For the constant-� hypotheses the creation

of the thermal mass is necessarily linked with the equivalent e�ect of the entropy

production. While such an e�ect is also plausible within Grad's model of variable

�, and even necessary in plateau range of �, entropy production does not have to be

uniquely de�ned in this case as the source of the thermal mass. The entropy source

can nonetheless be determined from the thermal mass source (and conversely)

with the formula of eq. (11). Yet, since the standard Onsager-Joule dissipation

expressions (too approximate in character) cannot incorporate the e�ect of the

variable � in a covariant way, the general case of phase dependent dissipative

processes seems now to be practically limited to the constant-� approximation.

The usual thermodynamic variables cease to be the most relevant variables

when inertial e�ects (and associated sources) are present. Even for weak de�nitions

of �, the thermodynamics of the mass frame is di�erent from (but equivalent

to) that in the conventional frame. In the former the temperature becomes an

auxiliary variable only, and the basic intensities are the chemical potentials of

the thermal mass and the bare mass. With the thermal inertia de�nitions of the

natural variables [41] have to be broadened.

In spite of quantitative disagreement between various de�nitions, a �nite ther-

mal momentum can be interpreted as that of the thermal mass; it is a consequence

of the phenomenon that a part of the observed mass of the medium is of purely

thermal (i.e. entropy-related) origin. As soon as ow is described in terms of a

thermal component and a mass component, the part of the energy ow that is

equipartitioned as it moves ahead in the uid can be associated with a velocity, a

momentum and a mass, the thermal velocity, momentum and mass. This division

makes the thermal momentum as legitimate a variable as the ow of entropy itself.

Any consistent set of the momenta yields the same tensor of matter.

Why introduce and investigate the thermal mass? A di�erent view of the same

phenomenon (here dissipation) is always illuminating. Some e�ects hidden in the

classical representation are easier to recognize in the canonical (mass) frames:

explicit momenta, representation dependence, nonconservative properties of mass,

invariants of classical thermodynamics. All phase variables become velocity poten-

tials in the mass frame; the transformation to this frame reveals that the entropy

phase is a relative quantity, which is una�ected by the common phase shift, and
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hence has the property of a state variable. The physical nature of � has recently

been con�rmed in a di�erent approach using a relativistic interpretation of � [79].

One important conclusion of our analysis is that a source in one frame does not

need to be the same in another frame if nonlinear transformations are involved.

Yet, the state functions, the matter tensor and the total and thermal mass remain

unchanged.

Quantum �eld theories may help to add more precision to the concept of ther-

mal mass. Kandrup [80] argues that the produced entropy possesses an intrinsic

physical meaning, this meaning being especially clear in the context of a quantum

theory, where a direct connection exists between entropy generation and particle

creation. Intraparticle force �elds in manybody relativistic systems posses necessar-

ily a �nite energy density Eint and hence an intraparticle mass Eint=c2 . Identifying

Eint=c2 with �0s = ��s one can develop a relativistic theory of thermal mass [78].

There are several apparent advantages of using an explicit thermal mass. One

argument follows from consistency in operating with all entities represented by the

same form as that of the matter, the mass or density form. The exotic notion of

the thermal momentum (of the entropy ow) acquires in the canonical frame the

natural physical interpretation of the usual linear momentum assigned to mass in

motion. The appraisal of the extremum Lagrangian of the uid � as the pressure

stemming from the mass constraint of the action integral gains in the mass frame

its corraboration. The dissipative aspects of the thermal mass involve the frictional

behavior and di�usional models; the latter are known as those exhibiting relatively

small variability of their coe�cients with the process state. The use of friction

coe�cients sheds more light on the mechanism of the ux interaction than the use

of conductances, which combine diverse friction and concentration e�ects [81]. The

role of a caloric coordinate for consistent setting of an H-theorem in Lagrangian

frames is essential, as �rst exposed by Grmela and Teichmann [82].

However the most important applications of the thermal mass are still to come

through its prospective inclusion to the theory of relativistic systems, since the

e�ect of the thermal inertia in terms of entropy has only a formal meaning, where-

as that in terms of mass and diagonal kinetic energy allows the direct use of

the whole power of relativity theory. In particular, some nagging di�culties of

relativistic thermodynamics (e.g. relativistic temperature transformation) can be

treated in a new, e�ective way [78]. Another prospective application is the the-

ory of chemical reactions, where the thermal mass may be regarded as an extra

reacting component. In this case, recent treatments imbedding chemical kinetics

within the context of nonequilibrium thermodynamics may �nd original and useful

applications in the canonical mass frames.
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