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2.8 Melting and Freezing of Clusters:
How They Happen and What They Mean

R.S. Berry

2.8.1 Introduction: The “Phases” of Clusters

Clusters, of even as few as seven atoms, may exhibit characteristics we associate
with distinct, solid-like and liquid-like forms of matter [1]. Understanding how
these forms behave at a microscopic level, how we identify them and character-
ize them, and what we can learn from them about phase changes more generally
are the topics of this chapter.

The first issue to address is what “liquid” and “solid” should mean in the
context of clusters. What is a liquid-like cluster or a solid-like cluster? What
observable or calculable properties characterize liquid-like and solid-like forms?
We take a first clue from the compliance of bulk liquids and the contrasting
stiffness of solids. Bulk liquids, inelastic as they are, respond to even very small
forces, deforming and conforming as the forces demand. Solids are, of course,
stiff and elastic up to fairly high limits, beyond which they deform permanently
or fracture. The compliance of liquids implies that they have some “soft modes”
of motion, that is, some vibration-like modes whose natural frequencies are very
low compared with those of typical lattice vibrations, e.g. lower than 10!'2 g~?
(2, 3]. This is not to say that liquids have no high-frequency modes; indeed, all
the spectral evidence indicates that liquids have many modes with frequencies
comparable to those of solids, but in addition have some of much lower
frequencies. The characteristic deformability of liquids also implies that liquids
can change their geometric forms easily. Translating both of these to apply to
the world of small clusters, we can expect the vibrational spectrum of a liquid
cluster to have a significant density of states at frequencies well below typical
frequencies of solid-like clusters, and to be capable of passing readily - on the
time scale of the periods of the soft modes - from the well around one minimum
on the cluster’s potential surface to the wells around other minima. In other
words, the liquid cluster should have some slow, large-amplitude modes of
motion so that it can relatively readily rearrange, isomerize and explore its

potential surface.
Another kind of structural characteristic that should distinguish solid clus-

ters from liquids are their radial and angular correlation functions. Solids,
specifically crystals, show peaks in radial (pair) correlation functions corres-
ponding to the mean nearest-neighbor distance and to successive second-nearest
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and further-removed neighbors. Liquids show broader nearest-neighbor peaks
and rarely any well-defined peaks corresponding to more distant atoms or
molecules. The same criterion should distinguish solid from liquid clusters, with
the one ramification that clusters may have polyhedral as well as lattice-based
geometries and still be solid-like [4-6]. The angular correlation function, being
a three-body property rather than a two-body, is less frequently used than the
radial or pair function [7, 8]. However it too is a useful diagnostic. Not only are
maxima at particular angles sometimes helpful in identifying a geometry or
ruling one out; minima, corresponding to nonappearance of certain angles, are
strong indicators of solid-like behavior and in many cases of one structure
rather than another. The appearance of a low minimum at 90° in the angular
distribution functions of cold Ar,; and Arss indicate solid-like icosahedral
structures; the face-centered cubic (fcc) close-packed geometry is ruled out
because it has successive nearest neighbors forming 90° angles. More energetic
Ar;; and Args clusters have angular distribution functions with significant
probabilities at 90° (but still this is a minimum) indicating some kind of
breakdown of structural rigidity.

The adjacency matrix, showing which atoms are next to which others, has
been used to distinguish stiff solids, soft solids and liquids [9]. Another related
characteristic which naive intuition suggests might be an important property to
distinguish liquids from solids is the ease with which identical atoms or mole-
cules can permute positions with one another [10]. Indeed, the establishment of
permutational equivalence of identical particles is a sufficient condition for
liquid-like behavior. However the time scale required to achieve permutational
equivalence may be far longer than is relevant for experimental or computa-
tional tests of “phase”, so we should not require attainment of permutational
equivalence as a necessary condition for liquid-like behavior. However we may
wish at least to demonstrate that feasible paths are open to establish that
equivalence. Alternatively, if only the atoms of certain sites of a cluster seem able
to permute with one another, we may wish to denote such a situation as “surface
melting” or some other appropriate, restricted behavior.

Clusters may but need not exhibit clear solid-like or liquid-like behavior [1].
They may, instead, in a range of temperature or energy that is in some sense
“intermediate”, be slush-like, with properties that fall between those of solids
and liquids. Clusters of almost all substances are solid-like at low energies or
temperatures and clusters of many substances are liquid-like at higher energies
or temperatures. Between, a cluster may be slush-like or may exhibit clearly
defined, observable, coexisting solid and liquid forms, like chemical isomers
{11]. Both kinds of behavior seem to occur; at issue is what factors determine
which kind of behavior a given cluster follows. Another issue is whether the solid
or especially the more energized liquid can be relatively stable toward evapor-
ation, at least enough so to be observed in experiments or simulations.

At present, our ideas concerning the “phases” of clusters come from theory
and simulation. Important experimental results consistent with the theory and
simulations have been obtained but as yet they cannot be called definitive or
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unambiguous demonstrations of the theory-based ideas. Historically, the first
indications of distinguishable solid-like and especially liquid-like forms were
obtained from simulations [3, 12-17]. The general theory of the thermo-
dynamics of small systems has been well established some time ago [18] but the
specifics that explain how real systems behave, and how their thermodynamic
and dynamic behavior are related to each other and to the potential surface and
energy levels of the cluster, have emerged more recently, stimulated in part by
the simulations. Then, in part because of the new challenges stirred by theoret-
ical advances, many more simulations have now been done. The picture is still
far from complete but many of the main aspects of the subject now seem clear.
Here, we describe the theory and the simulations, and what we learn from them
of the freezing and melting of clusters, and of the implications of the behavior of
clusters for phase stability and metastability of bulk matter.

In the next section we develop the theory from the viewpoint of its logical
structure insofar as that can now be done, rather than from its historical
evolution. We begin with a few comments regarding that evolution in order to
illuminate some of the conceptual and technical difficulties. The third séction
addresses the use of simulations for studying clusters and particularly for
studying their phase behavior. The final section treats the implications for phase
equilibrium of bulk matter.

2.8.2 Theoretical Basis

The theory of phase equilibrium of clusters is really a balancing act between
thermodynamics and dynamics, in which time scales become an overarching
concern [19]. The very meaning of “equilibrium” comes under scrutiny in a way
one very, very rarely encounters with conventional phase or chemical equilib-
rium. The reason is that the time scales for clusters to attain dynamic equilib-
rium are sometimes just the time scales characteristic of some of the experiments
best suited for studying clusters, so that “what you get is what you look for.” But
before we explore the ramifications of time scales, let us examine the problem in
what seem like static terms.

We begin our discourse on the thermodynamics of clusters with a descrip-
tion in terms of the Helmholtz free energy of a cluster in a canonical (isothermal)
ensemble of clusters, all of a specific size, Fy(T). This description is appropriate
for the clusters of N particles, which we shall call N-clusters, under conditions of
some but certainly not all experiments. That is, in some experiments, the size
distribution becomes constant - “frozen in” - but the clusters are still in thermal
equilibrium with a heat bath of surrounding atoms. This may occur with jets of
carrier gas seeded with the species of interest, producing molecular beams of the
clusters. By contrast, in jet experiments with little or no carrier, the clusters may,
as a result of evaporative cooling without collisions, attain a distribution of
energies far from a thermal distribution [20]. A canonical distribution is hardly
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appropriate for such a system; instead, one must describe the system in terms of
an “evaporative ensemble”. At an opposite extreme, in a static cell clusters of
each size may not only approach thermal equilibrium distributions of energy:
the entire sample may approach an equilibrium distribution of cluster sizes, so
that the description of clusters of any given size must be described by a grand
canonical ensemble, in which both energy and mass may be exchanged with the
surroundings [21]. But with any of these descriptions, we can assume that the
internal vibrational modes of the individual clusters are coupled strongly
enough that we can define a mean internal temperature based on the mean
kinetic energy of the atoms within the cluster. Moreover the reasoning we
present can be extended readily, at least to evaporative ensembles and, with
a little modification to allow for evaporation and condensation, to grand
canonical ensembles.

Now we return to the Helmholtz free energy and to its connection to the
quantum  statistics of a system. The canonical partition function,
Q(T) = 3,9, 5™, is related to Fy(T): Q(T) = e FT¥T_ Furthermore all the
other thermodynamic functions can be derived from Q(T) by taking suitable
derivatives. In other words, knowledge of the canonical partition function is
sufficient to tell us all the equilibrium properties of the system of fixed mass
number N at temperature 7. For example if we know the vibrational and
rotational energy levels E; of a solid-like N-cluster and the degeneracies g; of
those levels, we can compute the free energy of that cluster.

In fact, if we have a reasonable approximation for those vibrational and
rotational energies and degeneracies, we can compute rather reliable free ener-
gies and other thermodynamic properties simply because the thermodynamic
properties are essentially weighted average values of negative exponentials of the
energies, in units of the average kinetic energy. That is, we do better in
estimating thermodynamic quantities than in estimating the individual energy
levels and degeneracies, provided we represent their general pattern correctly.

But we are interested not in the solid alone or the liquid alone but in the
comparison of the stabilities of the two. To make this comparison we must
evaluate free energies for both forms. This means we need models for both, from
which their free encrgics can bo estimated, 1t looks at this point like two simple
models are all we need. This would be correct if we could assume that both the
solid and liquid forms are stable at whatever temperature interests us. This is
a terribly strong assumption, too strong to be acceptable, although making it,
one can go on to rationalize the results of the early simulations from rather
simple quantum statistics [22]. Instead of making that assumption, we can take
a much sounder step by asking, “Within a context consistent with our (pre-
sumed) models for solid and liquid clusters, what are necessary and sufficient
conditions for the solid and liquid to both be stable?” This is a very productive
question because it leads us to new physical insight {23].

The stability of a form of matter can always be expressed in terms of the
existence of a minimum in a thermodynamic potential, such as a free energy,
suitable for the constraints on the system of interest. This is an easy statement to
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make, but it avoids a vital but subtle problem: with respect to what quantity is
the thermodynamic potential a minimum? In the present case, we suppose that
the system may be characterized by a parameter indicating the degree of
nonrigidity of the system, a parameter that acts much like an order parameter in
the Landau theory of second-order phase transitions. At least two ways have
been used to define this nonrigidity parameter, one a phenomenological quan-
tity, the ratio of two spectroscopic frequencies and the other, a quantity based in
the microscopic structure of the substance, the density of defects in the material
when it is quenched to the geometry of lowest energy in its current potential
well. The former, the ratio of the energy of the lowest rotational transition to the
lowest transition with no rotational excitation, is a slight generalization of
a parameter that had been used previously to characterize the degree of non-
rigidity in triatomic molecules [24]. The latter is an adaptation of a quantity
central to the Stillinger-Weber version of the defect model for liquid structure
and melting [25]. Used in our context, both give the same result when both yield
results, and the microscopic parameter leads to additional results [26).

Both ways of defining the extent of nonrigidity can be associated with ideal,
extreme models at the rigid, solid-like and nonrigid, liquid-like ends of a scale.
Calling y the nonrigidity parameter and setting y = 0 at the rigid end of the scale
and y = 1 at the nonrigid end (so the density of defects is defined on a relative
scale), we construct the patterns of energy levels and degeneracies, ie. the
densities of states, for the two limiting cases. By introducing this parameter, we
make the energies E;, the partition functions and the free energies into functions
of y. Explicitly, we now write F(T, y) for the free energy; Tis a physical variable,
and y is a parameter that allows us to tune the extent of nonrigidity of the
system, in principle by varying the Hamiltonian in a suitable, continuous
manner. We shall use this dependence of F on y shortly.

Using the phenomenological parameterization, it is natural to choose for the
solid either a very general, phenomenological model such as the Einstein or
Debye crystal whose density of states is well known and derivable from the
model Hamiltonian, or a reasonably realistic Hamiltonian such as a harmonic
model based on diagonalizing the harmonic Hamiltonian representing small-
amplitude oscillations around an assumed equilibrium structure. The Einstein
model, with all the vibrational frequencies the same and independent of cluster
size, is too crude to represent the solid-like clusters adequately, but almost any
more refined model, even an Einstein model with a size-dependent single
frequency for the lattice vibrations, scems adequate for describing the qualitative
aspects of the phase equilibrium of clusters [22].

A suitable corresponding choice of a phenomenological model for the liquid
is the Gartenhaus-Schwartz model [27], in which the interactions are identical,
harmonic attractive forces between every pair of particles. This model, de-
veloped for nuclei, leads to a spectrum of equally spaced levels with the
degeneracies of the totally symmetric representations of the unitary group
SU3N — 3)for a cluster of N identical particles. This model supposes that there
is so much empty space in the cluster that all the significant encounters between



192 R.S. Berry

particles occur outside the radius of any hard-core repulsion, yet close enough
that the attractions are strong. It is not particularly realistic, but that is
irrelevant because we need not require the free energy to have its liquid-like
minimum at the extreme limit.

The microscopic model based on the density of defects yields results for the
solid essentially identical to those of the accurate derivation described above
because they really describe the same situation [26). The defect model for the
liquid introduces, in addition to the solid-like modes, a configurational entropy
and a set of energy terms in the Hamiltonian. The precise form of these terms
depends on one's choice of detailed model. For example one may assume that
the defects are independent of one another and of the vibrational modes of the
host, or that the defects interact with each other or with the host modes,
presumably to lower their frequencies.

For both kinds of model, the outcome is similar: the density of states of the
solid-like cluster is the lower at the low end of the energy scale, but at higher
energies, the density of states of the liquid-like cluster becomes the larger.
Consequently if we connect the limiting cases, rigid and nonrigid, in a correla-
tion diagram, all the energy levels at the low end of the energy scale slope
upward from the rigid limit to the nonrigid, but the energy levels high on the
energy scale must slope downward from the rigid limit to the nonrigid [28]. This
is because cvery state appearing at one limit must also appear at the other, and,
apart from avoided crossings forced by Ehrenfest’s adiabatic theorem, the
connections can be made in order from bottom up. An example of such
a correlation diagram is shown in Fig. 1, for a cluster of five argon atoms [22].
The vertical scale is exaggerated by a factor of about 5 for the rotational level
spacings of the rigid limit in order to make them visible.

Now it is time to follow the implications of the energy level patterns for the
free energy [23]. At low temperatures, with only the low-energy levels popu-
lated, the free energy of the solid cluster is lower than that of the corresponding
liquid; in fact, at low enough temperatures, because of the upward slope of the
low-lying energy levels, the free energy must be a monotonic, increasing function
of y. However as the temperature increases, usually lowering the free energy of
solid, liquid and everything between, the free energy near the nonrigid end of the
scale decreases slower with T than that near the rigid end, because of the larger
contribution to 74S of the many available levels of the nonrigid form. This
makes the curve of F(T, y), for T above the lowest range, droop at the nonrigid
end of the scale of . At some temperature, F(7, y) develops a flat spot at or near
the nonrigid limit, a point of

OF(T,7) _

Iy

we call this temperature T}, the “freezing temperature”, because the solid is the
only thermodynamically stable form at temperatures below 7;. Above this
temperature, F(T, y) has two minima, one near the rigid end of the scale of y and
another near the nonrigid end. Each minimum corresponds to a locally stable

0;
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Fig. 1. A correlation diagram for the rotation-vibration levels of Ary in which the horizontal scale is
the degree of nonrigidity, y. No promotional energy is assumed necessary to achieve the liquid-like
form, which is a far stronger assumption than necessary. Nevertheless the qualitative form of the
diagram, with upward-sloping levels at the bottom of the scale and downward-sioping levels at
higher energies, carries the essentials for describing the phase equilibrium of solid and liquid clusters

form, analogous to chemical isomers. If a collection of N-clusters is in thermal
equilibrium, the solid and liquid forms are both present at any temperature for
which F(T,y) has two minima on the y scale, and the ratio

(liquid)
{solid)

where 4F = Fyq — F,,. The two forms coexist in a dynamic equilibrium; each
cluster is either solid-like or liquid-like at any instant, but over time, passes back
and forth between the two forms. At a temperature we can call T, the free
energies of the two forms are equal and the equilibrium ratio is unity. At
temperatures below this but above 7T}, the solid predominates. At temperatures
above T, the liquid predominates. In fact, as the temperature increases, the
curve of F(T,y) tips more and more toward the nonrigid end, until a temper-
ature 7,, is rcached which has

OF(T,y) _
¥y
near or at the rigid limit. Above T, only the liquid-like form is stable, and the

]

— p{—AF[kT)
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FIY.Ts) Fig. 2. A schematic representation of the free energy F(7, )
1 as a function of the nonrigidity parameter y for several

FlrTd S temperatures, from very low to high enough that the only
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curve of F(T,v) is monotonic and decreasing with y. Figure 2 shows the free
energy as a function of y for several different temperatures including 7, and T,,.
The picture that has emerged here is one in which clusters may have sharp
freezing temperatures, below which only their solid forms are stable, and sharp
melting temperatures, above which only their liquid forms are stable, but the
freezing temperature and melting temperature are not the same! Moreover this
description has separated the freezing and melting temperatures logically; they
need not be the same, when expressed in these terms. The equilibrium constant
has two discontinuities, at the limits of thermodynamic stability of each “phase”.
This description would be adequate if a) all clusters had distinct liquid-like
and solid-like forms and b) all clusters spent long enough intervals in their
solid-like and liquid-like forms to establish well-defined, observable equilibrium
properties characteristic of each phase. In reality, only some clusters meet both
these conditions [11, 29]. Some clusters, such as Ar,, Ar,;, Ar,s and Ar,,, do
meet both conditions. Others, such as Arg and Ar, ,, have potential surfaces with
wells forming heavily-worn staircases, successions of wells with not very high
barriers between one and the next, so these clusters do not have well-defined
solid-like and liquid-like regions of their potential surfaces. Others, possibly
Ar,,, pass back and forth between “phases” too rapidly to exhibit well-defined
solid and liquid forms and, instead, display average properties that make such
clusters seem slush-like. Figure 3 illustrates three kinds of potential surface, of
which only the first kind gives rise to the phase equilibrium described above.
The matter of time scale is crucial here [19]: does the cluster pass from one
“phase” to another at a rate fast or slow relative to the time required to establish
well-defined properties of a single phase, and is this time long or short compared
with the time we require to observe the “phase™ We cannot answer this
question from thermodynamic arguments; we must turn to dynamics to address
it. But notice that we have made a subtle twist to what we are calling “equilib-
rium”, If the observation time is long relative to the time required to establish
the dynamic equilibrium of the two “phases”, then “equilibrium” means we
observe a single kind of species with properties that are the average over both
“phases”; if the observation time is short relative to the mean interval spent in
a single phase and to the time required to establish stable, phase-like properties,
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Fig. 3. Schematic cross sections of the potential
energy surfaces for three kinds of argon cluster.
Only the first kind, here illustrated by Ar,,, gives
rise to scparately observable solid-like and liquid-
like phases and to sharp but unequal freezing and
melting temporatures
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then “equilibrium” means a mixture of two forms whose concentrations are in
a characteristic, fixed ratio at each temperature. In other words, what we mean
by “equilibrium” depends on how we observe the system.

2.8.3 Simulations and Experiments

Experiments to distinguish liquid and solid clusters have relied on two kinds of
information: spectral line widths and electron diffraction data. The spectral
analyses have been carried out thus far with argon clusters containing a single
foreign molecule that acts like a probe. In one set of experiments, Bosiger and
Leutwyler [30] used carbazole, a large, flat, disc-like molecule as the probe. They
found a range of low-energy conditions in which the visible spectrum of
carbazole with several Ar atoms attached appears sharp but shifted from the
spectrum of pure carbazole. At higher energies, the carbazole bands become
broader, which was interpreted as due to the availability of low-frequency
modes of motion for liquid-like argons attached to the carbazole by weak van
der Waals forces.

Other spectroscopic experiments were done by Gough, Knight and Scoles
[31] with sulfur hexafluoride in argon and by Hahn and Whetten [32], with
benzene in argon. The former were based on interpretation of the shift and width
of vibrational bands of the SF¢ and the latter, on an electronic transition of
benzene, again on the frequency shifts and widths of the transition in clusters of
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various sizes. At a fixed temperature in both of these experiments, the small
clusters show broad bands which were interpreted as due to liquid-like behavior
and the large clusters showed sharp bands, attributed to solid clusters. Clusters
of intermediate size showed complex bands consisting of sharp, solid-like bands
and broader, liquid-like bands. This was interpreted to support the idea of
coexisting solid-like and liquid-like clusters of a given size. However both sets of
experiments were reinterpreted ~ the infrared by Eichenauer and LeRoy [33]
and the ultraviolet by Adams and Stratt [34] and by Fried and Mukamel [35]
- to indicate not two phases but two scts of sites for the impurity molecules, one
kind in the interior of the cluster and the other, on the surface. Other experi-
ments, using fragmentation patterns of ionized clusters [36], were interpreted to
imply that clusters may exhibit both solid-like and liquid-like forms. This
interpretation has not been challenged or replaced.

Electron diffraction experiments have concentrated primarily on structural
studies. However Bartell and coworkers have seen sharply peaked and more
diffuse, broadly peaked patterns for carbon tetrachloride and then for other
species, which they have interpreted as due to solid and liquid clusters [6].
Which appears in a given experiment depends on the conditions in the source
from which the clusters come. Coexistence of these two forms has yet to be
proven.

Until more experiments can be done which test the coexistence and sharp
limits of existence of solid and liquid phases of clusters, simulations can be
carried out to explore and test some aspects of the issue. Two kinds of simula-
tions have dominated the research on phase changes in clusters. Some have been
carried out by Monte Carlo (MC) methods [7, 15-18] and others, by molecular
dynamics (MD) [3, 8-14, 19, 37], which is simply successive solution of the
equations of motion from an assumed potential of interaction among the
particles. Both MC and MD calculations may be carried out at constant energy
or at constant temperature. However MC has been used far more for isothermal
(constant-T) systems and MD, for constant-E systems because these correspond
to time-invariant Hamiltonians and conservative systems. However it is possible
to carry out MD calculations that give the same values for all equilibrium
properties as a canonical ensemble gives. This method, introduced by Nose [38],
involves adding to the Hamiltonian one degree of freedom more than is found
for the physical system. The “phantom™ degree of freedom, if suitably chosen,
acts like a heat bath, exchanging energy with all the physical variables. The
entire system maintains a constant energy but the energy of the set of physical
variables fluctuates just like an isothermal system. This procedure can be carried
out with many different choices of the extra degree of freedom, but until now,
only the choice made by Nosé has been exploited [39].

>
Fig. 4. Time histories of short-term average kinetic energies or vibrational temperatures for clusters
of Ary,: a) a cold solid; b) a warm liquid; c) within the coexistence range of energies, with both solid
and liquid behavior for the same cluster, as it passes between the two forms as time proceeds
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The simplest way to use simulations is to follow the time sequence of the
mean kinetic energy of the atoms in a cluster held at constant energy. This is, in
effect, a vibrational temperature. One carries out the averaging over enough
steps of the integration in time to cover a few periods of vibration but not so
long that many different regions of the potential surface are explored during the
averaging interval. For argon clusters, a time step of 10~ !4 s~ js suitable for
most work and an averaging interval of 500 steps works out well, For systems
with stronger forces, such as clusters of KCl, one must use a shorter time step.

A time history of a cluster of Ar,; at low energy is shown in Fig. 4a [37]; the
temperature is nearly constant and low. In fact the mean temperatures for this
system form a sharp Gaussian distribution. At a slightly higher temperature, one
sees a slightly broadened distribution of short-term mean kinetic energies, and
an occasional dip corresponding to passage from one potential well to another,
that is, from one permutational isomer to another. At considerably higher
energies, one sees a broad distribution. Furthermore the solid clusters all have
approximately the geometry of the icosahedron, while the broad distribution of
Fig. 4b is associated with what seems an amorphous structure, ie. that of
a liquid. Between the energy at which the cluster looks liquid and the lower
energy at which it seems solid, one sees for many clusters a bimodal pattern of
mean temperatures, a sharper distribution corresponding to a hot solid and
a broader distribution corresponding to a cold liquid. Recall that these refer to
simulations at constant energy, so the two parts of the distribution correspond
to a high-potential energy region of liquid behavior and a deep-potential region
in which the cluster has a high mean kinetic energy and temperature. Figure 4c
shows an example of this.

The distribution of mean temperatures may be constructed in either of two
ways. The mean temperatures may be collected into “bins” and the number in
each bin plotted [11, 37], or the mean temperatures may simply be sequenced
and a curve constructed by augmenting the ordinate one unit with each new
incidence of a temperature as one goes up the temperature scale of the abscissa
[40]. The former is, in principle, the derivative of the cumulative distribution
constructed in the second method. The former is susceptible to errors of making
the bins too large so that small peaks and shoulders in the distribution get
overlooked. The latter may give false impressions of shoulders or small maxima
because of noise in the data.

The passage back and forth between liquid and solid occurs only within
a limited energy range, consistent with the predicted sharp limits on the stability
of liquid and solid. However simulations cannot of course tell whether these
limits are truly sharp. They can only give us an indication of bounds on the
region within which the two phases may coexist.

To establish well-defined short-term temperatures requires only about
5% 107'3 57! or 500 time steps. To establish a stable distribution and mean of
the short-term mean temperatures requires about 10,000 time steps. In the
energy range within which both phases may coexist, one may be able to see
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passage from one to another “phase” within perhaps 50,000 time steps or less.
However to determine the equilibrium ratio of liquid to solid as the ratio of
times spent by one cluster as liquid divided by the corresponding time spent as
solid, i.e. to use the ergodic hypothesis, we require as many as 1-3 million time
steps. Fortunately such long runs are now entirely feasible on modern com-
puters.

Other diagnostics are also very useful and sometimes very enlightening. The
mean square displacement as a function of time, {r*(t)) is one of these. Its slope
is six times the diffusion coefficient. Clusters at low energies show (r*(t)) that are
essentially horizontal, meaning that there is no diffusion. At higher energies, the
cluster takes on the slope and diffusion coefficient of a liquid. In the region in
which the temperature distribution is bimodal, the mean square displacements
for each mode in the distribution can be computed. What one finds is a very
warm solid with only very slow diffusion and a significantly cooler liquid with
significant diffusion and a diffusion constant compatible with that of the bulk
liquid. Of course all the mean square displacements reach a constant upper limit
at the distance corresponding to the diameter of the cluster.

The radial and angular distributions have been used as diagnostics of
simulations. The angular distributions in particular, as mentioned previously,
give helpful indications about what structures the solid form may have [7, 8].

A common and helpful characteristic for distinguishing liquid-like behavior
from solid-like is the root-mean-square deviation of the nearest-neighbor dis-
tance from its mean. It had been suggested by Lindemann that this quantity
should show a sharp increase when the liquid forms, and that this should follow
a slow increase with temperature up to a value of about 10 should jump. This
criterion, shown in Fig. 6, is well supported.

The caloric curve of {(T(E)) vs. energy for a constant-energy simulation or
(E(T)) vs. temperature for a constant-temperature simulation is another useful
way to extract information about phase equilibria from simulations and the
data they generate [8, 11, 14, 37]. A smooth curve without inflection is a good
indicator for a continuous transition from solid-like to liquid-like; a caloric
curve with a flat spot such as that in Fig. 7, or even an S-like wiggle indicates
equilibrium between two phases. However the presence of an inflection or
wiggle only indicates phase equilibrium without disclosing what phases are
involved.

That not all clusters show coexistence of well-marked phases emerges also
from the simulations. Some, such as Ar,,, simply have no bimodal distribution
of temperatures. Others, such as Ar,,, appear to have ready passage between
solid and liquid. In either case, the clusters must act like slush, rather than like
distinguishable liquid and solid phases. And still others, notably metal clusters
and clusters of salt molecules, show “phases” much like soft solids, in which the
cluster may pass among several structures without large displacements that
permute atoms among all the equivalent sites. For example Cu, has a regular
octahedral geometry in its configuration of lowest energy [9] (if the Jahn-Teller
distortion, due to orbital degeneracy, is neglected); there are thirty of these
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octahedra that are permutationally distinct. And each octahedron can be
distorted to another structure that corresponds to a local minimum on the
potential surface well above the octahedron in energy; around each of the thirty
octahedra, there are twelve of these distorted structures. Within a restricted
range of energies a Cu, cluster may pass among the twelve distorted octahedra
and the regular octahedron from which they are derived, without passing to any
other octahedron or related distorted structure. This situation is a kind of soft
solid behavior, which Sawada and Sugano [9] called the “fluctuating state.” At
higher energies, the cluster can pass among all the stable structures and permute
all the atoms among all the sites, but in the energy range of the “fluctuating
state™ no such permutational equivalence can be established.

The connection between these various kinds of behavior and the potential
surface or the energy levels of the cluster is a subject still very much in
development. It is clear that if the cluster has one kind of deep, narrow potential
well and a high, rolling region separated from the deep well by a moderate or
high barricr, then the cluster must exhibit the two-phase coexistence described
in the previous section. If the potential has a series of wells at successively higher
energies, all separated by low barriers, like a staircase, then the behavior is
slush-like and no clearly defined coexistence region will be found. A set of
quantum-statistical models, based on constructed densities of states, were ana-
lyzed by Bixon and Jortner [41] to probe the coexistence question in terms of
the two diagnostics of a) the number of maxima in the distribution of mean
temperatures and b) the form of the caloric curve of mean temperature vs.
energy.

2.8.4 Implications for Bulk Matter

The phase equilibrium behavior of clusters seems to produce a paradox for the
phase equilibrium of bulk matter, but in fact if we follow carefully how this
equilibrium depends on N, we can gain several insights into the behavior of bulk
matter [26]. There are two things to question: first, why are the freezing and
melting transitions the same sharp transition for bulk matter? Second, what
becomes of the discontinuities at 7; and T, as N becomes arbitrarily large? The
first question was answered many years ago but we get a little new insight by
answering it in the present context. The second is a new challenge whose answer
tells us something about metastable, supercooled bulk matter.

The reason that freezing and melting occur at the same temperature for bulk
matter is apparent when we write the free energy and the equilibrium constant
with N explicit [18]. The free energy difference, AFy = N x Auy where Apy is the
difference in the mean chemical potentials of the liquid and solid clusters of
N particles. The equilibrium constant )

K = e~ 4FWkT _ o~ Naun/kT
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which is dominated by the behavior of NAuy. The chemical potential difference
4uy changes from positive to negative as the temperature increases through
T, where Auy = 0. This makes K swing from a small number to a large number.
If N is relatively small, then the change of K from less than 1 to greater than 1 is
gradual. If, on the other hand, N is large, for example 10*°, then K swings from
very near zero to very, very large within a tiny interval of T. To see this, we can
best use not K but ¥ = (K — 1)/(K + 1), equivalent to [(liquid) — (solid)]/(total
amount), which varies from — 1 at low temperatures where the clusters are all
solid to + 1 at high temperatures where the clusters are all liquid. The quantity
A has discontinuities at T, and T,, just as K does, but it is easier to display.
Figure 8 shows how X" behaves for two values of N.

The result is that for large N, X" switches continuously from a value very
near — 1 through O to a value very near + 1 within an immeasurably small
interval of temperature, so X and K look discontinuous at T,,. The discontinu-
ity associated with the first-order melting/freezing transition is thus a conse-
quence of large N, and for any finite system X" is, strictly speaking, continuous.
Furthermore the local stability of each phase persists on both sides of T,. This
means that a theory of the first-order melting and freezing transition must not be
one in which one phase changes from unstable to stable while the other does the
reverse at T,,. The local stability prevents such behavior.

Now how about the other question? What happens to 4T, = T,, — T; as
N becomes very large? To answer this, we return to the defect model of Stillinger
and Weber [25], which gives us a way to write and differentiate AF(T, y) for any

Tm
1 J -« MediumN
- LargeN
(K-1)/(K+1)

0+
‘ 1

T T

f eq
.20 210 0 1'o 20

"Temperature”

Fig. 8. Two schematic curves of X', the more gradually sloping curve for moderate N and the
steeper curve for larger N. Note that the discontinuities at 7; and 7,, are visible for moderate N but
not for larger N
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7. The details of this calculation are given elsewhere [40]; here we merely cite the
conclusions.

If the defects do not interact with cach other or with the lattice vibrations,
then 4T, goes to zero as N becomes large. However if the defects attract each
other or if, as is most usual, the defects lower the energy of the lattice modes,
then 4T, remains finite as N becomes arbitrarily large. The local stability of the
thermodynamically unfavored phase persists beyond T.q. However if N is large,
this local stability cannot be scen in a system in equilibrium because X" is too
near — 1 or + 1. Moreover the discontinuities at 7, and 7, cannot be seen
because they are too small.

There is a way to observe the persistence of local stability, namely by
preventing a system being cooled from coming to chemical and phase equilib-
rium. If a liquid is cooled below T, and no solid has been formed, one can cool
that liquid further still. In fact the liquid can be cooled as low as T,. Below that
temperature, there is no locally stable liquid, whatever the size of the system. In
other words, this analysis has shown that there is a sharp limit to supercooling
of pure liquids, and that the locus of lowest temperatures for which the liquid
branch of the p-V curve has negative slope, the so-called spinodal curve, has
a sharp lower bound. This is an answer to a question that has been raised since
the spinodal was recognized from the equation of state of van der Waals.
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