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MELTING, FREEZING AND OTHER PECULIARITIES 
IN SMALL SYSTEMS 

R. STEPHEN BERRY 

Department of Chemistry and The James Franck Institute, 
The University of Chicago, Chicago, Illinois 60637. 

(Received 1st January 1989) 

The theory of solid-liquid phase changes in small systems implies that such systems may-but need 
not-xhibit sharp but unequal freezing and melting temperatures. The origin of this conclusion is reviewed 
and its implications for the theory of first-order phase transitions in bulk matter are discussed. The logical 
separation is made of the two temperatures as limits of stable existence, each of its own ‘phase’; and the 
convergence, with increasing size of cluster, of the observable coexistence to a sharp transition temperature 
is discussed. The equilibrium ratios of concentrations for such a coexistence are discontinuous functions 
of temperature at the limits of stability. The possibility of observing coexisting forms in equilibrium depends 
on there being a time scale separability, who validity lies outside the realm of thermodynamics. It is 
conjectured that spinodals are the loci of the same kind of locally stable states responsible for coexisting 
solid and liquid forms of clusters, and that the limits of spinodals are the points of discontinuity in the 
equilibrium concentration ratios, the chemical ‘equilibrium constants’. 

1 INTRODUCTION 

Most traditional investigations of phase transitions have been based on the behavior 
of large systems, the ‘thermodynamic limit’ in which N, the number of elementary 
components of the system, is essentially infinite. This is understandable because some 
of the singularities associated with phase transitions, notably instabilities, occur in 
the limit of infinite N. However, we have now learned that we can find some new, 
deep insights into the nature of phase transitions by studying the behavior of small 
systems, examining, for example, the kind of equilibrium they exhibit between 
solid-like and liquid-like forms, and how this behavior changes with N. Our powers 
to study small systems with precision, and to extract detailed information about their 
behavior, in some instances show us things we might never notice or be able to 
extract from an analysis of an infinite system. In particular, we can enhance our 
understanding of simple, first-order transitions, the most unyielding of all to our 
investigations. 

The main point of this discussion is that small clusters of atoms or molecules may 
exhibit a kind of phase transition between solid-like and liquid-like forms which is 
different from any of the first-order, second order or higher order transition of bulk 
matter. However, this special kind of transition must go over to a first-order, 
melting-and-freezing transition as N becomes large. This phenomenon can be 
expected for some clusters, but the theory which predicts its occurrence and the 
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260 R. S. BERRY 

simulations which allow us to test that theory are permissive, not mandatory. 
According to the results of simulations, argon clusters of some sizes show this 
solid-liquid ‘transition’, while others show behavior like solid-solid transitions, or 
simply softening. The import is that all these, especially the solid-liquid transitions, 
illustrate some aspects of the transformation from one form to the other, in a manner 
we can carry over to large systems, and which manifests the effect on the phase 
equilibrium of the size of N 

Perhaps the most fascinating characteristic of solid-liquid equilibrium in clusters 
is the predicted occurrence of sharp but unequal freezing and melting temperatures, 
with a range between the two in which the two ‘phases’ coexist like chemical isomers. 
By ‘freezing temperature’, T,, we mean a lower limit for the thermodynamic stability 
of a liquid-like form; likewise, by ‘melting temperature’ T, we mean an upper limit 
in temperature for the thermodynamic stability of a solid-like form. Hence no stable 
solid exists for T > T, and no stable liquid exists for T < T,. That two forms of a 
small system may coexist has been understood for a long time (Hill, 1963, 1964). 
However the possibility of sharp limits of temperature on the range of coexistence 
only emerged relatively recently; how this comes about is the topic of the next section. 
We then go on to discuss the implications of the theory for our understanding of 
solid-liquid phase transitions in bulk matter, and conclude with a conjecture regard- 
ing spinodals. 

Some aspects of this subject were discussed by this writer and his coworkers in a 
recent review (Berry et al., 1988; Berry, 1989). However, recent as it is, that review 
is already dated, primarily by its limitations. New results from experiment as well as 
from simulation have appeared, and some new, relevant theoretical tools, particularly 
for finding saddle points, have been found. This discussion is obviously vulnerable 
to the same problem in such a fast-moving field. We hope it will nonetheless be of 
some use. 

2 

In this section we outline the simple, quantum-statistical theory describing the nature 
of the equilibrium between solid-like and liquid-like forms of a cluster of a fixed 
number of constituent particles. We assume for simplicity that the particles are 
identical, although several experiments and simulations have now been done with 
clusters deliberately made heterogeneous in order to have a probe, particularly a 
spectroscopic probe, in each cluster. 

We begin by identifying a solid-like form with a typical, near-rigid molecule or 
cluster, and a liquid-like form with a very nonrigid form of the same cluster. Our 
procedure takes three steps. The first is the selection of idealized, limiting models for 
rigid and nonrigid extremes for our cluster which are simple enough to allow us to 
construct their energy spectra including their degeneracies, i.e. their densities of states, 
and from them, partition functions and thermodynamic functions. The second is the 
connection of these limiting models into a correlation diagram, quantifying the scale 
of nonrigidity that connects them and constructing, at least in principle, partition 
functions and thermodynamic functions that depend on the degree of nonrigidity of 

A MODEL FOR MELTING AND FREEZING OF CLUSTERS 
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MELTING AND FREEZING IN SMALL SYSTEMS 261 

the system as well as on its temperature. Last is the determination of necessary and 
sufficient conditions for the coexistence of liquid and solid forms of the cluster and 
the recognition of any observable consequences of these conditions. 

The selection of models for rigid and nonrigid limiting cases was done for 
homogeneous clusters by taking very simple limits (Kellman and Berry, 1976; Amar, 
Kellman and Berry, 1979; Kellman, Amar and Berry, 1980; Ezra and Berry, 1982). 
The nonrigid limit was taken to have pairwise harmonic attractions with negligible 
short-range forces, an example used first for nuclei (Gartenhaus and Schwartz, 1957). 
The rigid limit was represented by several choices corresponding to different compro- 
mises between simplicity and reality. In all models except the most realistic for the 
rigid limit, the spectra could be found by an algebraic method. That is, the 
Hamiltonian for each model had such high symmetry that the spectrum could be 
found by elementary methods. This is justifiable in the present context because the 
behavior of thermodynamic properties, the objective we want at this stage, is quite 
insensitive to details of the density of states, depending only on its gross shape. 

The Gartenhaus-Schwartz model for the nonrigid limit is unrealistically extreme, 
but serves its function well as a limit. This model, applied to N identical particles, gives 
us a Hamiltonian for 3N-3 identical harmonic oscillators in the center-of-mass system, 
hence a Hamiltonian with SU(3N-3)  invariance, a spectrum of equally spaced levels 
and degeneracies corresponding to the dimensions of the totally symmetric re- 
presentations of this unitary group, since each level corresponds to a specific number 
of bosonic quanta. We must then reduce the degeneracies further, eliminating all but 
the levels with proper permutational symmetry for the particles, symmetric or 
antisymmetric for bosons or fermions, respectively. 

For the rigid limit, the simpliest model is that of a rigid, spherical top with force 
constants chosen to make the fundamental vibrational frequencies equal, i.e. to give 
an Einstein model. This extreme choice makes the Hamiltonian invariant under 
SU(3N-6)*0(3),,,*0(3)int, that is, under the unitary group of the equivalent, harmonic 
vibrations and the two kinds of rotational invariance of the spherical top, the 
universal invariance with respect to 1aboratQry frame in a field-free space and the 
special invariance of the sphere with respect to the choice of internal coordinates. 
More realistic models reduce the rotational symmetry to that of a symmetric top or 
even just an asymmetric top, and the vibrational symmetry to that of a point group. 
The extreme of realistic choices for the rigid limit selects the vibrational frequencies 
to be those of the real cluster or something very close such as the frequencies derived 
from an effective potential. As with the nonrigid limit, the admissible states are those 
with permutational symmetry appropriate to the statistics of the constituent particles. 

The partition functions q(E) for microcanonical distributions are just the densities 
of states, and those for canonical distributions, Q( T), can be taken as the Boltzmann 
distributions for all but the lightest atoms, possibly with lithium as the borderline 
case for temperatures of interest for freezing and melting. The free energies for the 
limiting cases are just given by A(T) = kT In Q(T). (We in fact neglect the small 
distinction between the Helmholtz and Gibbs free energies, A and F, of ensembles 
of the individual clusters, since the volumes of the clusters themselves change only 
slightly in the range we consider.) Free energies computed from this simple model 
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262 R. S. BERRY 

are reasonably successful in reproducing the results of classical simulations of argon 
clusters found from simulations (Briant and Burton, 1975; for surface tension, 
Nishioka, 1977; also other citations in Berry et al., 1988, and Berry, 1989), particularly 
the dependence on N of the temperature T,  at which the free energies of the solid-like 
and liquid-like forms are equal, and the surface free energy and surface tension 
(Natanson, Amar and Berry, 1983). 

The next stage, the connection of the limiting cases into a correlation diagram, is 
done by requiring that we preserve the total angular momentum, the parity and the 
permutational symmetry of each state across the diagram and no more. This, plus 
the adiabatic noncrossing rule, gives us the necessary device to work from the ground 
state upward and make a qualitatively correct correlation diagram. Examples are 
given in Kellman and Berry, 1976; Amar, Kellman and Berry, 1979; Kellman, 
Amar and Berry, 1980; Ezra and Berry, 1982; and Berry et al., 1988; such diagrams 
have now been constructed for clusters of 3, 4 and 5 identical particles and for 
six-particle clusters of the composition XY,. An example is given in Figure 1. The 

u = 8  

u = 7  

u . 6  

u = 5  

u =4 

u = 3  

u 22 

u z l  

u =o 

Figure 1 A typical correlation diagram connecting the energy levels of a nonrigid system with a rigid 
limiting case of the same composition. This example is constructed for three identical particles, and with 
the rotational and vibrational levels drawn for the (unrealistic) idealization that the rigid limit is a spherical 
top. The quantum number a is the number of quanta of vibration in the rigid limit; the splittings of the 
vibrational levels are indicated, qualitatively only, for reduction to a symmetric top. The quantum number 
v is the number of quanta in the nonrigid limit. The appropriate symmetries of the Hamiltonian are 
indicated beneath the abscissa. 
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MELTING AND FREEZING IN SMALL SYSTEMS 263 

methods used for 3- and 4-particle clusters are limited to these special cases but 
those for the 5-particle clusters are general. Their implementation for larger clusters 
should be carried out by using a computer to do symbolic manipulation; like angular 
momentum algebra, the amount of tedious, error-prone manipulation increases 
rapidly with the size of the system. 

Quantifying the abscissa of the correlation diagram is easy to do on the basis of 
experimental data but seems very difficult to do, at present, starting from a theoretical 
quantification of nonrigidity. One effective device for assigning a numerical scale to 
the degree of nonrigidity is the ratio y of two spectroscopic transition frequencies: 
the numerator is the lowest excitation energy from the rotationless ground state to 
the first state with one quantum of angular momentum; the denominator is the lowest 
excitation energy from the ground state to a state with no angular momentum. In 
the rigid limit this becomes the ratio of the first rigid-rotor transition (which may 
not exist, if, as with Ars, there is no vibrationless state with J = 1 because of particle 
symmetry), to the first totally symmetric vibrational excitation. In the nonrigid limit, 
these two frequencies are exactly in the ratio of 1:2, so it is convenient to multiply 
the ratio by 2, so that the range of the nonrigidity parameter y is from 0 in the limit 
of an infinitely high vibrational frequency for the stiff limit, to 1 in the nonrigid limit. 

3 CONDITIONS FOR THE VALIDITY OF THE MODEL, AND THEIR 
IMPLICATIONS 

Next we must find necessary and sufficient conditions for the existence of thermo- 
dynamically stable forms of the clusters of a specific composition (Berry, Jellinek and 
Natanson, 1984a, 1984b). With the degree of nonrigidity given by a quantitative index 
y, the free energy F can be treated as a function of the temperature Tand of y. The 
condition for a stable form of the cluster at temperature TI and nonrigidity y1 is 
simply that F(T', y) has a minimum at y = y l .  If F ( T  y )  is smooth and the minimum is 
in the open range of y, then d F ( T  y ) / a y  = 0 at a minimum of F, and this is what has 
been found in the few model calculations that have been done of this derivative. 
However a minimum may be a boundary minimum, with no zero derivative; at least 
such a situation seems physically acceptable. For solid and liquid forms to coexist 
in equilibrium at T the free energy must exhibit two minima, as a function of y, for 
that constant ?: 

To see what behavior can be expected of F ( T  y), we look at the pattern of energy 
levels in the correlation diagram, of which Figure 1 is typical. Even without supposing 
any promotional energy to bring the cluster from a rigid form to a nonrigid form, 
we see that the low energy levels of the solid form have positive slope. This is a 
consequence of their being pure, excited rotational levels in the rigid limit, which 
must connect with various kinds of vibrations at the nonrigid limit. That is, the 
density of states at low energies is greater for the solid-like form than for the 
liquid-like. There are a few exceptions to this, such as Li, and, if it exists, He,, which 
are very nonrigid even in their ground states, but the most likely situation is that of 
Figure 1. This implies that the partition function at low temperatures, at which only 
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the upward-sloping levels have significant populations, is a maximum at  or near the 
solid limit and decreases monotonically from there. The free energy, correspondingly, 
is monotonic also, with a single minimum at or near the rigid limit, at low 
temperatures. The lowest energy of a solid-like real cluster is, in virtually all known 
examples, significantly lower than the minimum energy of the same cluster in a 
liquid-like form, in fact usually enough lower that the solid has vibrational levels 
below the minimum energy of the liquid. This of course makes the case much stronger 
for the stability of a single solid phase at low temperatures. However we do not need 
the extra condition of a nonzero promotion energy to make a solid cluster into liquid 
in order to make the following argument for the phase equilibrium of solid and liquid 
clusters. 

The density of states of the nonrigid limiting case increases rapidly with energy, 
faster than that of the rigid limit case by a factor of at least N 3 ,  and faster still if the 
level spacings of the nonrigid case are smaller than the vibrational separations of the 
rigid limit. This means that at high energies, the density of states of the nonrigid 
from surpasses that of the rigid limiting case and that the overwhelming majority of 
the states appearing at these energies in the correlation diagram must have negative 
slopes. In fact as the temperature of a system is increased from a very low value, the 
free energy of the nonrigid limit increases slower than that of the rigid limit, so that 
the free energy curves, functions of y for successively higher temperatures, sag at the 
nonrigid end. At a sufficiently high temperature, the free energy develops a zero 
derivative at or near the nonrigid limit, and at temperatures above this, there is a 
second stable minimum in F(1: y )  at or near the nonrigid limit. 

As the temperature is raised further, the curves of free energy tilt more and more 
toward the nonrigid limit, passing through a temperature T, at which the free energies 
at the two minima are equal. At still higher temperatures, the free energy eventually 
becomes a monotonic, decreasing function of y ,  so that there is only a stable liquid 
form at high temperatures. (This discussion neglects evaporation; of course a cluster 
might have such a high vapor pressure that it would evaporate rather than exhibit 
the two-phase behavior. However, simulations have indicated that this is not the case 
for any of the systems yet studied.) Therefore, if F is a smooth function of Tand y, 
there must be a highest temperature at which the solid form is stable, i.e. a temperature 
at which the free energy shows a zero in aF/ay at or near the rigid limit. We 
call the lower limit of stability of the liquid the freezing temperature T,, because no 
stable liquid exists below this temperature. Likewise the upper limit for the existence 
of a solid form is the temperature T,, the melting temperature, so called because 
no solid exists above T,. Schematically, Figure 2 illustrates the behavior of F(T, y) as 
a function of y for several values of T, from a low temperature through T,, a 
temperature in the coexistence region, T,, and finally a temperature at which only 
the liquid is stable. 

Let us review this set of inferences and then probe a little deeper into what they 
involve. By examining the densities of states of near-rigid, solid-like and nonrigid, 
liquid-like clusters and connecting them in a correlation diagram, we have drawn 
the inference that such small systems may exhibit sharp but unequal freezing and 
melting temperatures. Between these two temperatures, the two forms coexist in 
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1 Y' 0 
Figure 2 The typical behavior of the free energy F(T, y )  of a cluster of N particles as a function of y for 
various values of T, spanning the range from a low temperature at which the cluster is solid-like, through 
the coexistence range, to a temperature high enough that the cluster is liquid-like. The freezing and melting 
temperatures are, respectively, 7'' and T,. 

thermodynamic equilibrium, in a ratio fixed by the chemical equilibrium constant 
K = [solid]/[liquid] = exp(-AF/KT), where AF is the difference between the free 
energies of solid and liquid clusters at temperature T For such an equilibrium to 
exist, there must be a mechanism for a cluster to pass from one form to the other 
and back. In a canonical ensemble of clusters, all containing N constituents, one 
would observe a population ratio equal to K; if the systems themselves behave 
ergodically, they must divide their existence between the two 'phases' in the same 
ratio. 

This argument has been made without reference to constraints on pressure or 
volume. The tacit implication has been that the behavior of the free energy just 
described occurs over a range of pressures and is not sensitive to the volume of any 
container for a cluster, so long as the volume is large compared with the size of the 
cluster. This point is important insofar as the implication of the argument is the 
existence of a range of temperatures and pressures over which the two forms, solid 
and liquid, of an N-particle cluster may coexist-in contrast to the sharp coexistence 
curve of a macroscopic system. Simulations, carried out primarily for conditions of 
zero pressure, bear out this supposition. 

4 DYNAMICAL ASSUMPTIONS AND FURTHER CONSEQUENCES 

If the equilibrium composition ratio of the two phases is observable, then either the 
method of preparation must create an ensemble with that ratio or the rate of 
interconversion between the forms must be high enough to establish equilibrium on 
the same time scale of our observations. However that rate must not be fast relative 
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to the time of each individual observation; otherwise we would observe only the 
average properties of the two phases, and interpret the form of the clusters as a sort 
of slush. More specifically, the clusters must spend intervals long enough to establish 
characteristic equilibrium properties in each phase, if we are to be able to observe 
coexisiting phases. This is an additional requirement for coexistence that goes beyond 
the characteristics of the stationary states, a condition on the dynamics of the 
individual systems. An ensemble of clusters of a single size which meets all these 
requirements will exhibit, in ordinary experiments, an equilibrium constant K for 
coexistence of solid and liquid forms which has two discontinuities: one at the freezing 
temperature Tf at which the constant switches from its low-temperature infinite value, 
implying only solid clusters, to a finite, nonzero value, and another discontinuity at 
the melting temperature T,, at which K switches from a finite, nonzero ratio to an 
all-liquid value of zero at temperatures above T,. 

Strictly, we are confusing dynamics and equilibrium by setting a constraint on 
rates. We ought, one may argue, to speak of true stationary quantum states of the 
individual clusters, states which have nonzero probabilities in both the solid-like and 
liquid-like regions of their multidimensional configuration spaces. This is true but is 
only relevant if we can make observations slowly enough to resolve the energy 
differences between such delocalized stationary state. We do just this when we resolve 
phonon levels of a liquid-like cluster which, in classical terms, would be described as 
passing among several potential wells. However the distinguishability of solid-like 
and liquid-like phases depends specifically on a clear separation of time scales. The 
shortest of these is the time scale for vibrations; if the cluster is solid-like, these 
vibrations can be described in terms of quantum states or classical oscillations within 
one potential well; if the cluster is liquid-like, they involve motions or quantum states 
spanning several wells on the potential surface. The next time scale is that for passage 
between wells. In a solid, this is many orders of magnitude longer than the vibrational 
time scale, while for a liquid, it is comparable to or only a little longer than the 
vibrational time scale. The third time scale is in a sense a special case of the second; 
this is the time scale for passage between a solid-like region and a liquid-like region, 
if such distinguishable regions exist. 

The argument underlying our model of coexisting solid and liquid clusters supposes 
that the potential surface of the cluster has, in some energy range, solid-like regions 
with deep potential wells and large energy separations between the quantum states, 
and liquid-like regions with low barriers between its potential wells. It supposes, 
furthermore, that there are barriers, either energetic or entropic, separating these two 
kinds of regions which make passage between them much slower than passage among 
the wells in the liquid region. Whether such time scale separations occur can only 
be decided by dynamical studies, for example by simulations or by careful examina- 
tion of which stationary states must be superposed to construct localized packets 
and of how these packets spread with time. In fact, evidence from classical simulations 
(Amar and Berry, 1986; Jellinek, Beck and Berry, 1986; Davis, Beck and Berry, 1987; 
Beck, Jellinek and Berry, 1987; Honeycutt and Anderson, 1987; Garzon, Avalos 
and Blaisten-Barojas, 1987; Quirke, 1988) indicates that at least some clusters, for 
example Ar,, and Ar,,, do exhibit these separations and that solid and liquid clusters 
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coexisting over a measurable temperature range should be observable. There is now 
also some indicative evidence from experiments that such coexistence may occur 
(Bosiger and Leutwyler, 1987; Hahn and Whetten, 1988). 

It is also useful to point out that not all clusters can be expected to exhibit the 
kind of solid-liquid coexistence we have just described. Other kinds of behavior may 
occur and have been seen in classical simulations. Some are analogous to solid-solid 
transitions, others to gradual softening, still others to coexistence of two phases in 
the same cluster. For example, at energies well below that corresponding to the 
freezing temperature, Si, and perhaps Ar, exhibit a kind of transition to a soft solid 
(Sawada, 1987; Sawada and Sugano, 1989), exploring not only the deepest well which 
surrounds the regular octahedral geometry, but also a set of shallower wells 
corresponding to distorted octahedra-yet without becoming nonrigid enough to 
permute atoms among the sites of the regular octahedron. Polymers of NaCl 
molecules-really better described as aggregates of equal numbers of Na' and C1- 
ions-exhibit a rich variety of transitions (Luo, Landman and Jortner, 1987). For 
example one part of a cluster (NaCl),,,, at 811 K, may be solid-like and ordered 
while another part of the same cluster may be liquid-like. The Ar,, cluster shows 
surface melting (Nauchitel and Pertsin, 1980); how general this is for clusters of other 
sizes remains unknown. 

More important in the present context than the variety of phase-like charactersitics 
of small systems is the relevance of the solid-liquid transition of clusters to the 
solid-liquid, first-order phase transition of bulk matter. In those cases in which 
clusters exhibit solid and liquid forms, they should show phase transitions of the 
kind we described above-not first-order, not second-order, in fact not classifiable 
in any of the standard categories of bulk matter, but a kind of transition that belongs 
only to finite systems. This transition differs from transitions of bulk matter but can 
be related to them. The most important characteristic we must examine of the phase 
transition of finite systems is the finite temperature range of coexistence, which we 
call AT.  Here, we shall have eventually to distinguish between the temperature range 
within which solid and liquid forms may coexist in observable amounts, and the 
temperature range between the discontinuities of K. We begin with the former, the 
range of observable, nonzero, finite values of K. 

The coexistence of the two phases is only meaningful if the system satisfies the 
time scale considerations just discussed, and if AT, is wide enough to be observed. 
This brings us to the question of how A T  is related to N. To see this, we write K 
so as to make its dependence on N explicit: K = exp(-NAp/kT), where Ap is the 
difference in chemical potential, the difference in free energy per constituent atom or 
molecule, of the two forms. 

Now we make a little order-of-magnitude analysis. Over a small range of Tabout 
A p  = 0, we can think of this exponent as simply NAp measured in units of kT. The 
variation of A p  with Tis As, the change in entropy per particle, roughly A In u, the 
change in the log of the ratio of available volume per particle. This is a number of 
order 0.1-1 for small clusters. Hence A p  can be expected to vary an amount very 
roughly from 0.5 to - 0.5 over a few degrees K for such systems, meaning that K may 
vary from about 150 to 1/150 over a degree or so, for N of order 10, a variation that 



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f C
hi

ca
go

] A
t: 

21
:4

9 
18

 O
ct

ob
er

 2
00

7 

268 R. S. BERRY 

would allow us to detect a finite coexistence range and measure changes of the 
so1id:liquid ratio within it. If however N is much larger, say lo", then even with a 
significantly smaller entropy difference, say even two orders of magnitude, K swings 
from exp(lO*) to its inverse in the same temperature range. Put in terms of the range 
of observable, nonzero, finite values of K, this means that we would only be able to 
detect coexisting phases within a range of about 10-"oo degrees K, obviously an 
unobservably narrow range. However, and this is a very important point with respect 
to a speculation that follows, the discontinuities in K may remain separated by a 
significant, i.e. a measurable, interval of temperature. 

We conclude two important points from this argument that give us a deepened 
insight into the nature of first-order phase transitions. The first is that the freezing 
and melting temperatures can be considered separately, as limits of thermodynamic 
stability of specific phases, and need not be considered as necessarily equal or logically 
equivalent. The second, already recognised (Hill, 1963, 1964) but often overlooked, 
is that the equality of the freezing and melting temperatures and the expectation of 
sharp coexistence curves is the result of the large value of N, which forces the 
equilibrium constant for two coexisting phases to swing from an enormous number 
of essentially zero withing an unobservably small temperature range. 

How can we proceed? We can learn from these points something about how we 
can now address a theory of first-order phase transitions. It had seemed, at least to 
some of us, that a proper theory of first-order phase transitions would display not 
only the instability of a phase at its limiting conditions but would also exhibit the 
stability of the new phase to which the substance transforms. The separation of time 
scales discussed previously carries with it the implication that each phase has its own 
effective Hamiltonian, i.e. that the true, full, complex Hamiltonian has different 
expansions at each value of y at which the free energy has a minimum. For example 
the Hamiltonian for the solid form is the Born-Oppenheimer Hamiltonian for 
small-amplitude displacements about a specific equilibrium geometry of the nearly- 
rigid cluster; the Hamiltonian for the liquid form may be a mean-field Hamiltonian 
reflecting the average of all the interactions on the portion of the potential surface 
available at the energy or temperature of interest. (Note that the latter may or may 
not be a Born-Oppenheimer surface; near-rigidity and conformity to the adiabatic 
approximation are completely separate characteristics and must not be confused.) 
When the system undergoes a transition from solid to liquid or the reverse, it is of 
course still described by the same exact Hamiltonian but not at all by the same 
approximate Hamiltonian. In effect, the system switches Hamiltonians when it 
undergoes a phase change. This is what makes it so difficult to describe how a metal 
changes from a conductor to an insulator when it vaporizes; the approximate 
Hamiltonians of the two forms, which are the only things we know how to 
manipulate, are completely different. 

But the lesson from our analysis here is that we are not only justified in separating 
the problem of the instability of one phase from that of the stability of the other; we 
should try to make that separation and then introduce 'in the middle' a separate 
question of how the system transforms from conforming to one approximate 
Hamiltonian to conforming to another. This new question, however, is one of the 
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mechanism of the phase change, and not of the equilibrium of the phases. The problem 
of phase equilibrium becomes one of how the onset of instabilities of the two phases 
occurs, and the challenge to the theory of bulk phase transitions is now to show 
whether the instability of one phase, approached from below, occurs at the same 
point as the instability of the other phase, approached from above; it need not, and 
we exploit this point in the closing paragraph. The challenge to the theory of finite 
systems is finding observable examples of finite coexistence ranges which will allow 
us to study how the width of these ranges depends on the size of the system. 

We conclude this section with a conjecture about the connection between the phase 
equilibrium exhibited by clusters, the first-order transition between solids and liquids, 
and the spinodal curves and their limits. Consider in particular the clusters which 
exhibit sharp freezing and melting tempertures and well-defined coexistence of both 
phases between the two temperatures. As the clusters become larger, as we have seen, 
the range of observable coexistence grows narrower, becoming unmeasurably small 
for macroscopic N. However, nothing in the logic requires that the interval of 
temperature between T, and T, must become narrow. It is quite possible for a cluster 
in solid form to remain locally stable about T,, the temperature at which Ap is zero, 
and likewise it is possible for a liquid-like cluster to retain local stability at 
temperatures below T,. 

Our conjecture is that the supercooling of liquids and superheating of solids follow 
just such local minima in the free energy, so that for bulk systems, the spinodal curves 
are precisely the curves of the local minima of the kind responsible for coexistence of 
solid and liquid forms of small clusters, and the limits of the spinodals are sharp, real 
and occur at Tf and T,, the temperatures at which the equilibrium ratio of the solid-like 
and liquid-like forms has its discontinuities. Bulk matter in equilibrium must of course 
satisfy the equilibrium ratio, and the only reason spinodals are observable is that 
we can prepare metastable forms-supercooled or superheated-in which only local 
equilibrium is attained. But the line of argument and this conjecture argue for sharp 
limits to the local stability at the ‘true’ freezing and melting temperatures, the limits 
of stability T, and Tm. Whether this can be demonstrated rigorously remains to be 
seen; clearly it is plausible and consistent with what we know of first-order phase 
transitions. And it illustrates how our perspective on such a rich problem as the 
nature of first-order phase transitions is expanded by approaching it afresh from the 
viewpoint of small, finite systems. 

Note added in proof: A vaiidation of this conjecture has been achieved (Berry and 
Wales, 1989) based on a defect model for melting (Stillinger and Weber, 1984). 
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