
J. CHEM. SOC. FARADAY TRANS., 1990, 86(13), 2343-2349 2343 

INTRODUCTORY LECTURE 
Clusters, Melting, Freezing and Phase Transitions 

R. Stephen Berry 
Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, 
Illinois 60637, USA 

The nature of the equilibrium between liquid-like and solid-like clusters is reviewed, in terms of the conditions 
under which sharp transitions may or may not occur. These conditions may be expressed in terms of character- 
istics of the potential surface of the cluster. The connection between solid-liquid phase equilibrium of clusters 
and the first-order melting and freezing transition of bulk matter is discussed, both in terms of how the sharp 
melting point of bulk matter evolves from the corresponding temperature of larger and larger clusters, and in 
terms of the connection between the finite range of solid-liquid coexistence of clusters and the range within 
which metastable supercooled or superheated bulk material may exist. 

Atomic and molecular clusters are particularly fascinating 
now because of at least three factors. One is a happy conjunc- 
tion of experimental, computational and theoretical advances 
that enable us to study them as we never could previously. 
The second is the general realization that understanding clus- 
ters offers a bridge between our detailed, deep understanding 
of molecules and our powerfully predictive but still largely 
modelistic and phenomenological knowledge of bulk matter. 
The third is a hope that we will find new phenomena and 
new materials characteristic of the intermediate scale of sizes 
that characterize clusters. To some extent that hope is begin- 
ning to become reality. People are seeing phenomena that 
can be observed only in aggregates of tens or millions of 
atoms, but not in molar quantities. Some of these are struc- 
tural: the most stable structures of many kinds of clusters are 
based on polyhedra, particularly icosahedra, rather than on 
lattice-based structures. Others are chemical : clusters some- 
times exhibit chemical reactions that neither individual atoms 
nor bulk matter undergo. And still others are transitional, 
manifestations of different kinds of behaviour and changes 
from one to another in ways uniquely characteristic of small 
systems. It is this last aspect of clusters that we address here. 

The kinds of transitions we think of in the context of clus- 
ters are, for example, the transition from van der Waals to 
metallic binding, which is seen in clusters of mercury;' the 
transition from paramagnetic to ferromagnetic behaviour' or 
even the appearance of unexpected magnetic properties' and 
the transition from solid-like to liquid-like behaviour. Metal- 
non-metal transitions in clusters are still very much a puzzle. 
By contrast, we have begun to understand some aspects of 
the solid-liquid change, and a rich phenomenon it is. It gives 
us new insights into the freezing and melting of bulk matter 
and into the nature of bulk metastable, supercooled and 
superheated phases, and shows some of those new pheno- 
mena characteristic of small systems. 

A cluster is, in some respects, a special sort of molecule. It 
is useful to distinguish clusters from conventional molecules 
insofar as clusters may exhibit stable structures for virtually 
any number, N, of component particles, and in most 
instances more than one locally stable structure, even for a 
fixed N. (Metallic, ionic and van der Waals clusters typically 
exhibit clusters of all N and many structures for each N; 
covalent clusters, and the most extreme are ligated covalent 
clusters such as the boron hydrides, commonly exhibit stable 
structures for only selected values of N and then, only one or 
a few stable structures.) The most stable form,. for a cluster of 
a specific N, may have an energy well below that of any other 

locally stable structures, or there may be many structures 
with roughly the same energy, or there may be a smooth pro- 
gression of locally stable minima with energies from low to 
high. But whatever the pattern, the number of geometrically 
different minima increases very rapidly with N, the number of 
atoms in the cluster, so rapidly that there is little or no 
reason to try to catalogue all the minima on the potential 
surface for a cluster of more than 10 or 20 atoms. The total 
number of minima, including all the permutational isomers, 
becomes astronomically large as N increases. For example, 
Hoare4 enumerated the then known geometric isomers for 
clusters of N atoms interacting through Lennard-Jones pair- 
wise potentials like that of argon, for N up to 13. For N = 6, 
thFre are two geometric isomers; for N = 7, 4; for N = 9 
there are 18; for N = 11 there are 145 and for N = 13, there 
are 988. If all the permutational isomers are counted, to give 
the total number of classically distinguishable< minima on the 
potential surface for N = 7, there are 8904. The structure for 
N = 8 with the lowest energy, a singly-capped pentagonal 
bipyramid, alone has 40320 permutational isomers. Fig. 1 
shows that the number of geometric isomers seems to grow 
exponentially with N, and the number of permutational 
isomers of each of these can be expected to grow roughly 
factorially, so the total number of potential minima on the 
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Fig. 1. The logarithm of the number of geometrically distinct isomers 
of argon-like, Lennard-Jones clusters of N particles, as a function of 
N. 
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energy surface of a cluster of N identical atoms can be esti- 
mated as N! exp(N). 

Moreover finding even the structure of lowest energy can 
defy careful searching procedures. Hoare and Pal’ used a 
method of growth sequences based on several different seed 
structures to try to find the minima, including the lowest, for 
‘ Lennard-Jones argon ’. Later molecular-dynamics studies,6 
augmented by quenching, showed that for N = 17,22 and 33, 
the structures of lowest energy were not included among 
those found by Hoare and Pal; in the first two cases, the 
energies are almost the same as those of the lowest minima 
reported by Hoare and Pal, but for N = 33, the energy of the 
newly found lowest structure is 1% below that of the lowest 
structure previously known, a relatively large energy differ- 
ence. 

Probing Dynamics of Clusters 
The appropriate questions about the dynamics of clusters 
must therefore be rather different from those we ask about 
ordinary molecules, for which the potential surfaces can be 
related in detail to the mechanics of the atomic motions. 
Clusters may be studied like bulk matter, in the sense that 
one can use simulations to evaluate heat capacities, radial 
and angular distribution functions, mean-square displace- 
ments and diffusion coefficients, mean nearest-neighbour 
amplitudes of motion, velocity autocorrelation functions and 
their Fourier transforms, which are the power spectra. Such 
indices have indeed all been used and their behaviour has 
shown that several quite different kinds of clusters exhibit 
unambiguous liquid-like behaviour at high energies or high 
temperatures and solid-like behaviour at low energies or low 
temperatures, cf: ref. (7). 

Some clusters exhibit sharply distinguishable solid-like and 
liquid-like  form^.^*^*^ Which they are depends on both the 
forces and the number of particles in the cluster. This two- 
phase behaviour is associated with a potential surface having 
both deep, narrow, solid-like potential wells and broad 
regions of considerably higher potential energy in which 
there are many potential minima separated by relatively low 
barriers.,V8 Clusters of this kind include not only the icosahe- 
dral Ar,, but also Ar7 , Ar,, Ar,, and Ar19. All these exam- 
ples not only show sharply distinguishable solid-like and 
liquid-like forms in simulations by both constant-energy and 
constant-temperature molecular dynamics. They also show 
coexistence of the solid and liquid forms over a range of 
energy and thus over a range of mean kinetic energy as well. 
This is evident from both the time dependence of the short- 
term average kinetic energy (e.g. averages over 500 steps of 

s each for Ar), equivalent to a mean internal vibra- 
tional temperature, T = 2Eki,,/(3N - 6)k, and from the dis- 
tribution function of those average kinetic energies. The time 
histories of the internal temperatures for this class of clusters 
show that each has a range of energies within which the clus- 
ters spend long intervals, of order 0.05-0.5 ns, in regions of 
high potential energy and then, more or less at random, com- 
parably long intervals in regions of low potential energy. 
Hence any fast probe such as electron diffraction’ or optical 
spectroscopy of clusters with energy in the range of 
coexistence would show a mixture of solid-like and liquid-like 
clusters. 

The possibility of such coexistence had been predicted” on 
the basis of a general argument concerning densities of states 
of solid-like and liquid-like clusters, when these are treated 
like chemical isomers coexisting in dynamic equilibrium 
under conditions of a canonical or microcanonical ensemble. 
The essential physics of the argument is simply that the 
density of states of the solid-like form is higher than that of 
the liquid-like form at low energies, but the density of states 

of the liquid rises much faster with energy than that of the 
solid. (If a significant fusion energy is required to melt the 
solid, there are, of course, no states of the liquid at low ener- 
gies.) So long as one can write the energies, partition func- 
tions and free energies G, as functions not only of 
temperature but also of a non-rigidity parameter, y, local sta- 
bility can be inferred for any combination T, y for which G(T, 
y) is a local minimum. At low temperatures, the free energy is 
a monotonic, increasing function of non-rigidity so only the 
solid-like form is stable. At sufficiently high temperatures, the 
free energy is a monotonic, decreasing function of tem- 
perature so only the liquid-like form is stable. Stability begins 
or ends, on the temperature scale, with the appearance or 
disappearance of a point of zero slope in the curve of G(T, y) 
us. y. Fig. 2 illustrates the behaviour of G(T, y )  us. y for a 
range of temperatures. 

The temperatures at which these zero slopes appear and 
disappear are precise quantities, but the appearance or disap- 
pearance of such a point in the solid-like end of the y-scale is 
not related to the appearance of a flat spot in G(T, y) near the 
liquid-like end of the scale. Hence the upper limit of stability 
for the solid cluster is not logically linked with the lower limit 
of temperature for stability of the liquid-like form. Yet the 
limiting temperatures for the thermodynamic stability of the 
two phases are sharp, at least for those clusters exhibiting 
coexistence of the two ‘phases’, within this model. Put suc- 
cinctly, the model of ref. (10) argues that clusters may have 
sharp but unequal freezing and melting temperatures. 

Not all kinds or sizes of clusters exhibit sharply distin- 
guishable, coexisting solid-like and liquid-like phases. Some, 
such as Ar, and c U 6 ,  show coexisting solid-like forms over a 

T= I 

0 1 
Y 

Fig. 2. The free energy, G(T, y )  us. y, of a cluster showing a range of 
coexistence of solid and liquid forms, for a succession of values of the 
temperature T. At T, the derivative is zero in the vicinity of y = 1 so 
this is called the ‘freezing temperature’, being the lower limit for sta- 
bility of the liquid form. At T4 the derivative is zero in the vicinity of 
y = 0, so T4 is called the ‘melting temperature’, being the upper limit 
of thermodynamic stability of the solid form. 
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restricted range of energies.” Others, such as Ar8, Ar14 and 
Ar,, , show no clearly distinguishable ‘phases’; instead, each, 
within a certain energy range of its own, exhibits slush-like 
behaviour, soft and fairly dense but not clearly solid or 
liquid.,.’ The occurrence of such behaviour forces us to look 
more closely at the necessary and sufficient conditions for 
coexistence of distinct ‘phases’ in clusters, and to clarify what 
‘solid’ and ‘liquid’ mean in the context of microclusters. 

The solid-solid equilibrium found for the 6-clusters is easy 
to describe and to generalize. Models of both Ar, and cu6 
based on central, pairwise potentials are regular octahedra in 
their lowest-energy geometries. [That is not correct for real 
Cu, whose hexamer shows a Jahn-Teller distortion from the 
regular octahedron; however, the central field models of ref. 
(1 1) cannot account for any Jahn-Teller effects.] Around each 
regular octahedral minimum at - 12.7128 (E is the Lennard- 
Jones well depth) on the potential surface are 12 equivalent 
minima of higher energy, - 12.3038, which are reached simply 
by distorting the octahedron.’2 There are no other minima 
on the surface. Thus the potential surface consists of 30 clus- 
ters of 13 wells, like 30 clocks. The energy barriers separating 
the 30 regular octahedra from their 12 distorted-octahedral 
neighbours, - 12.0798, are somewhat lower than the barriers 
between the (permutationally) different clocks, which are at 
-11.6308. Hence, if the clusters have energies above the 
regular-to-distorted barrier but lower than the barriers 
between permutationally different clusters, they can visit both 
of the geometrically distinct kinds of wells but are restricted 
to keep the same neighbours. In the band between -12.0798 
and - 11.6308, the clusters are unable to rearrange to any 
permutationally different isomer in the way a freely diffusing 
cluster would. Hence the transition one sees in this energy 
range is that between a regular solid and distorted solid; 
more precisely, simulations show the cluster dwelling for an 
interval in the well of a regular octahedron, and then visiting 
a well of a distorted octahedron. 

These visits are very brief at the low end of the ‘coexistence 
band’ but become somewhat longer as the energy increases. 
The average duration of intervals in the well of the regular 
octahedron diminishes with increasing energy, so that at an 
energy just below that at which passage is observed between 
different ‘clocks’, the dwell times in distorted-octahedral 
wells are only a little shorter than those in ‘regular 
octahedral’ wells. At higher energies, the clusters are free to 
explore their entire potential-energy surfaces, and all dwell 
times diminish. No solid-like phase can be distinguished at 
such energies. 

The Ar, cluster modelled by isoergic molecular dynamics is 
quite different; so is the corresponding copper ~1us ter . I~  The 
potential surface of Ar, has four geometrically distinct kinds 
of an energy range within which the distribution 
of mean temperatures is bimodal’ and three distinct energy 
ranges characterized by (a) solid-like behaviour, (b) 
coexistence of solid and liquid and (c) only liquid-like behav- 
iour.I4 Moreover, in this system, the rates of isomerization 
and distributions of dwell times in specific wellsI4 are very 
different from those in Ar, and reveal much about the 
dynamics of many clusters. The isomerization rate increases 
from ca. 0.2 ns-’ at -14.44948 to 1.00 at -14.2898, 2.01 at 
-14.1739, 8.36 at -13.83, 26.56 at -13.4352 and 63.7 at 
- 13.0635. According to the results of Amar and Berry, this 
rate drops with falling energy faster than a simple exponen- 
tial at low energies, but is apparently exponential at higher 
energies, as fig. 3 shows. This is not unexpected for a struc- 
ture ‘freezing in’ to its low-energy solid form. 

The distribution of residence times or isomer lifetimes 
among the individual isomers of Ar, (not simply the distribu- 
tion among the four energetically distinct kinds of minima) 
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Fig. 3. The rate of isomerization of Ar, , plotted as ln(rate/ns- I), as a 
function of the energy of the cluster, in units of the Lennard-Jones 
well depth, E.  

taken from isoergic, classical molecular dynamics shows a 
rapid change from low-energy behaviour through the inter- 
mediate coexistence range to the high-energy, liquid range. At 
low energies, the clusters make only the briefest visits to any 
of the higher wells, no more than 50 ps at an energy of 
- 14.28988, while dwell times in the lowest-energy wells range 
from 500 (and only one such short occurrence appeared) to 
6500 ps. At a typical intermediate energy of - 14.18798, in the 
coexistence range, the longest dwell times in the deepest wells 
remain about the same but there are many dwell times below 
lo00 ps in those wells and many brief visits, typically for less 
than 500 ps, in all of the higher kinds of wells. At typical 
energies in the liquid range, such as - 13.068, the system still 
spends longer intervals of time in the deepest wells than in 
those at higher energy, but these extend only to a little over 
200 ps, and most are less than 100 ps; dwell times in higher 
wells at these energies are all less than 50 ps. At this high 
energy, random quenches found the cluster in one of the 
deeper wells in ca. 60% of the instances. A rough estimate of 
the statistical probability, based on an assumption of para- 
boloidal potential wells, indicated this should be CQ. 70%. 

The difference between these two kinds of systems is the 
result of the quantitative differences between the barriers 
separating different parts of the potential surfaces and 
between the energies of the A deep, narrow well 
protected by a high barrier almost guarantees a stiff solid 
that must remain stable up to high energies. Other deep wells 
readily attainable from just one specific ‘mother’ well corre- 
spond to isomers that may coexist with the ‘mother’ so long 
as other regions of the surface remain inaccessible. Shallow 
wells give rise to easy passage from one part of the potential 
surface to another, and therefore to high atomic mobility. 
Thus, we get a qualitative picture in which a necessary condi- 
tion for coexistence of the solid and liquid forms of a cluster 
is a deep, solid-like well and a region of many shallow wells. 
A quantitative model has been developed recently by Bixon 
and Jortner” for computing partition functions for systems 
with various patterns of quantum states, corresponding to a 
variety of relationships among the depths of the minima on 
the potential surface. This mode bears out the previous quali- 
tative picture and quantifies the kinds of caloric curves, the 
curves of energy us. temperature, that can arise from various 
kinds of potential surfaces. 

The conditions concerning the well depths are necessarily, 
but are not sufficient for coexistence of the solid and liquid 
forms of a cluster. There is a dynamic criterion, which might 
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equally be called a criterion of quasi-equilibrium or of time- 
scale separability, which must also be satisfied. 1 6 e 1  , The 
cluster must also spend intervals in each ‘phase’ long enough 
to develop the equilibrium properties characteristic of that 
phase. If passage between the two forms is too facile and fre- 
quent, one can observe only the averaged properties taken 
over both forms. Slow passage in an isothermal system is the 
result of an effective freeenergy barrier due either to a high 
energy or to a low entropy; in a system with constant energy, 
slow passage between wells can only occur because relatively 
few segments of trajectories make their way across the 
saddles between the wells. That is, the ‘entropy of activation’ 
must be large and negative. Calculations18 based on 
constant-energy molecular dynamics indicate that passage 
among wells in clusters of Ar, and Ar, almost never occurs 
when the clusters have energies only a little above their 
saddle energies, and that an energy roughly twice the saddle 
energy is required for passage to be facile. For example, an 
Ar, cluster must have an energy of 1.9 times the barrier 
height to show a single passage out of the well of its lowest 
minimum in a trajectory of 10, steps. For Ar, , the ratio must 
be ca. 2.2. 

The stable geometric isomers and the saddles of Ar, are 
now known, at least up to energies of ca. -1%. The four 
stable forms, which we can call 1-4 in order of increasing 
energy, are the trigonal bipyramid, the monocapped octa- 
hedron, the tricapped tetrahedron and a skew structure 
which can be considered to be a bi-tetrahedron. Their ener- 
gies in units of E are -16.505, -15.935, -15.593 and 
-15.533. The saddles now known,” designated by the 
indices of the wells they link, are 1-2 at - 15.44, 1-3 at 
- 15.03, 1-4 at - 15.02 (diamond-to-square-to-diamond”) 
and at -14.39 (edge-bridging”), 2-2 at -15.10, 2-3 at 
- 15.32, 2-4 at - 15.28 and 4-4’ at - 14.548. These are con- 
sistent with the rates of passage found by Amar and Berry.14 
(Recent work2’ has shown that with accurate potentials, all 
the features of the Lennard-Jones surface are retained except 
the two highest, least important saddles. Furthermore some 
of the dwell times were overestimated by Amar and Berry, as 
careful examination with smaller time steps showed.”) 

The Ar, system can show coexistence of liquid-like and 
solid-like forms in part because the lowest well can, in effect, 
trap trajectories for long intervals even at energies far above 
the first saddle. However, if the cluster has enough energy to 
cross the lowest saddle with reasonable frequency, it can also 
cross the other saddles essentially as readily. In this way, the 
cluster can find all its permutational isomers of all its four 
kinds of stable structures, if it can find any of them. This is in 
sharp contrast to the Ar, cluster which can visit 12 distorted- 
octahedral minima from one regular octahedron throughout 
an energy band within which the cluster cannot reach any 
other isomeric geometries. Hence Ar, exhibits a solid-to-soft 
solid transition but Ar, shows a solid-to-liquid transition. 
Yet both kinds of behaviour are, in general, consistent with 
coexistence of two or more forms, at least one of which is like 
a trapped solid and at least one is considerably floppier, even, 
as with Ar,, enough to be liquid-like. The Ar, cluster might 
not seem a good example to show coexistence of solid and 
soft solid because if it can isomerise at all, it may pass readily 
from one distorted octahedron to another through the well of 
the regular octahedron, the one well which could conceivably 
be identified with a solid-like form. In fact, Sawada and 
Sugano” did find that Ar,, in one band of energy, some- 
times spends intervals in the distorted form, not just making 
passing excursions through the wells of the distorted form. 
(They do not specify the timescale of their dynamic calcu- 
lations; we might assume that they use the same 10 fs interval 
used by many others, and infer that the dwell times in the 

distorted octahedral wells are of the order of 200 fs.) They 
call the condition of dynamic equilibrium between regular 
and distorted octahedra the ‘fluctuating state’. 

There are still at least three important pieces of the picture 
missing, which the reader has probably already identified. 
One is the question of how we can determine, without finding 
a statistical sample of long trajectories, whether a deep well is 
capable of trapping trajectories for long intervals, even when 
the cluster has enough energy to pass over the key saddle or 
saddles of the problem. This is the old problem of the rate of 
unimolecular reactions recast in a form even more demand- 
ing than the traditional way. Now we want to know the 
answer for both isolated, constant-energy systems and for 
systems in a thermal bath, and we want to known what, in 
terms of the shape of the potential surface, governs the prob- 
ability that trajectories cross saddles. In many simulations, 
clusters with a little more than enough energy to cross a 
saddle do not ever seem to find and cross the saddle; fre- 
quently one sees that only when the total energy of the 
cluster is roughly twice the potential energy of the saddle 
does the cluster pass the saddle with moderate frequency, a 
few times per hundred thousand or million steps. To interpret 
this, we are asking for a more microscopic explanation than 
ever before. 

A second missing piece which accompanies the first is the 
question of how to make reliable estimates of the density of 
states or statistical weight or entropy of particular, constant- 
energy regions of the configuration space of a cluster. How 
much configuration space and phase space is available to a 
cluster on a specified energy shell and in a specified potential 
well? There are approximate ways to do thisz3 based on the 
density of states of a multi-dimensional harmonic oscillator, 
but multi-dimensional potential wells are hardly harmonic at 
the energies of their saddles, so the problem can hardly be 
considered solved. 

The third missing piece is the question of how the tran- 
sition takes place from the stable polyhedral structures of 
small clusters to the lattice structures of bulk crystals. This 
has plagued students of clusters at least as early as the chal- 
lenge by WerfelmeierZ4 of the dogma that lattice structures 
would dominate even small clusters. The subject has been 
reviewed5 and recently, studied in a fresh way: Quirke” has 
carried out Monte Carlo simulations of clusters including 
several of rather large size. In particular, he included N = 201 
and 209, which can give close-packed structures with as 
nearly closed-shell structures as can be made and can of 
course also give polyhedral structures, without closed shells. 
The structures of lowest energy for N = 201 and 209, for 
clusters with Lennard-Jones, argon-like interactions, are hex- 
agonal close-packed. We conjecture that the transition to 
lattice-based structures is a gradual, irregular function of N, 
showing itself in three ways: that as N increases from perhaps 
100 to perhaps lo00 or 1Oo00, the frequency with which the 
lowest-energy is lattice-based increases; that with increasing 
N, the fraction of lattice-based low-lying minima on the 
potential surface also increases, and increases somewhat 
faster and more smoothly as a function of N than does the 
frequency of lattice-based global minima; and that for still 
larger N, the lattice-based minima segregate to lower energies 
than the polyhedrally based minima. Testing this conjecture 
will be an interesting challenge for computational chemical 
physics. 

A Connection to Melting and Freezing 
of Bulk Matter 

The theory developed in ref. (10) seems to describe some 
kinds of clusters, but it would be unthinkable to leave it at 
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that stage without trying to find a connection to bulk matter. 
To do this, we can ask two useful questions, one about the 
nature of bulk melting and its relation to the theory, and the 
other about the predictions of the theory regarding the stabil- 
ity of finite liquids and solids and how they are related to the 
behaviour of bulk matter. More precisely put, the first ques- 
tion becomes three: Why is the melting temperature of bulk 
matter so sharp, why is it the same as the freezing tem- 
perature, and how would the answers to these emerge from 
the theory of ref. (lo)? The second emerges from the predic- 
tion that the freezing and melting temperatures T, and T,, 
interpreted as the limits of stability of the liquid and solid 
forms, respectively, are sharp but unequal, giving rise to two 
discontinuities in the chemical equilibrium constant K 5 

exp( - AG/k, T) = [liquid]/[solid], one at T, and one at T, . 
Again, put into precise, answerable form, the second question 
becomes two: What happens to the discontinuities in K as N 
becomes very large and under what conditions does AT, = T, 
- T, remain finite and non-zero as N becomes very large? 

These have been the object of recent work in our group at 
The University of Chicago,26 and this section will summarise 
that work. 

The first set of questions can be answered with concepts 
well-known for some time.” The equilibrium constant can be 
written in terms of the mean chemical potential ji = G/N for 
each ‘phase’, so that K = exp(-NAii/k, T). It is convenient 
to use, instead of K which goes from zero to infinity, X = 
(K - 1)/(K + 1) = ([liquid] - [solid])/([liquid] + [solid]), 
which ranges from -1 at very low temperatures to + 1  at 

high temperatures. There is a temperature T,,, between T, 
and ’& at which the chemical potentials of the two ‘phases’ 
are equal for clusters of a given N. Below this, Ap is negative 
and above, positive. We can assume safely that Aji behaves 
the same way at approximately but not exactly the same tem- 
perature. This means that Aji changes from negative to PO- 
tive and X changes from a number less than 1 to a number 
greater than 1, around Kq. If N is not very large, K may be 
not terribly different from 1, say between 0.01 and 100, over a 
discernible range of temperature and X may stay near 0 for 
such a range of T. However, if N is large, e.g. if it is lo8 or 
more and maybe if it is only 100 or 1O00, X must change 
from a number very near - 1 to a number very near + 1 
within an immeasurably narrow range of T. Fig. 4 illustrates 
this behaviour for two values of N, one small enough to show 
a gradual change in X and the other, a steeper, more con- 
fined increase with N around Kq. This behaviour as plotted 
is based on the supposition that p ( N )  and i i(N) converge 
smoothly to their bulk values as N -+ 00. For small clusters, 
although the trend in behaviour of AN), i.e. its envelope, is in 
general smooth, p can show sharp variations from one value 
of N to the next. This is especially a problem for small, cold 
clusters in which the character of the lowest wells and their 
nearest companions on the energy scale vary considerably 
with N, from steep and tightly bound to rather shallow and 
readily accessible to neighbouring wells. 

To interpret the behaviour of T,,(N) as N + 00 and see 
how it approaches T,,(~o), we26 have taken up the Stillinger- 
Weber of defect-induced melting, and added the 
assumptions that (a) the critical density of defects required for 
forming a liquid is about the same for large clusters as it is 
for bulk matter; (b) the difference in specific enthalpies of 
liquid and solid, 

AH(N) = H1jq(N) - H,l(N) 

=f(NsurfacJNbulk 7 Asurf/Abulk) 

That is, AH(N) is related to its limiting value by a function of 
two ratios, the fraction of atoms on the surface of the cluster 
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Fig. 4. This behaviour of X = (K - l)/(K + 1) = 
([liquid] - [solid])/(total) for clusters of two different values of N, a 
moderate value (open squares) and a larger value (solid points). The 
functions X‘ and K are discontinuous at Tf and T,; X is 0 and 
K = 1 at q,,. The discontinuities are shown at the same tem- 
peratures for both sizes of clusters, but in general the temperatures of 
the discontinuities will depend on N. 

and the ratio of energies of formation of a surface defect and 
a bulk defect; (c) AS(N) x AS(oo), on the basis that the 
entropy difference, per atom, between liquid and solid is 
dominated by the difference in specific volumes of liquid and 
solid, and that for clusters of moderate or large size, the ratio 
of liquid and solid densities is about the same as for bulk 
matter. One also neglects the differences in the contributions 
of soft modes to the vibrational partition functions, safe for 
anything large enough to be moderately well described by a 
Debye model. Then one shows that the configurational 
entropy of the defects is extensive, that is, proportional to N. 
From these, one can estimate the values of T,,(N) for argon 
clusters of ‘magic numbers’ of atoms, that is, for the Mackay 
icosahedra. The equilibrium temperature of the nth icosahe- 
dron should satisfy the relation 

T,,(N) z T,,(00)(1 - (1 - ~12011’ - 20n + 14)/ 

(213 + 1)[1 + 5n(n + 1)/3]}. 

The constant c is the only adjustable parameter. If c is 0.5, 
then for N = 55, T,,(55) is predicted to be 43 K, and if c is 
0.45, the predicted temperature is 37 K, in the middle of the 
coexistence range of 32 to 41 K found from simulations. The 
values of T,,(N) for the Mackay icosahedra rise very slowly 
with N, and are still below 60 K for all N below 1O00. 
However, the asymptotic temperature for the icosahedra 
should not be supposed to be the same as the true bulk 
T,,(oo) for argon because the latter is, of course, based on the 
close-packed lattice, not on the polyhedral structure, which 
would be expected to have a lower T,,(oo) than that of the 
crystal. One can then estimate the lowering of T,,(N) for 
values of N between the magic icosahedral numbers. This 
suggests that the relative lowering for intermediate N 
increases with N, but this may depend sensitively on the sta- 
bility of specific structures. Fig. 5,  taken from ref. [26(b)], 
illustrates the behaviour of T,,(N) expected from this argu- 
ment. 

The next step is the question of what happens to T, and T, 
as N -+ 00. More importantly, we wish to known whether the 
discontinuities in K and X persist as N -+ 00, and how 
AT, = Tf - T, behaves for very large N. This has been 
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Fig. 5. The behaviour of the temperature T J N )  at which the free 
energies of the solid-like and liquid-like forms of a cluster of N par- 
ticles, in this case Ar atoms, have the same free energy, based on ref. 
[26(b)]. The dashed curve joins ‘magic number’ structures; the inter- 
mediate peaks are expected to occur for values of N for which all 
triangular faces are capped. 

answered recently24 and the result has given new insights 
into the relationship between the solid-liquid phase equi- 
librium of small clusters and the nature of bulk solid-liquid 
equilibrium, particularly the metastable equilibrium of super- 
cooled liquids and (the rarely found) superheated solids. The 
question can best be put as: What are the necessary and sufi- 
cient conditions that AT, remains finite and non-zero as N 
becomes arbitrarily large? This, in turn, is equivalent to 
asking: What is the N-dependence of the condition that the 
canonical partition function ZJy, T) has an interior 
minimum in the range 0 d y d l ?  As in the investigation of 
what happens at T,,(N), Wales and Berry used the Stillinger- 
Weber version of a defect theory of melting26 to evaluate 
Zdy, T), the crucial quantity in this and every other descrip- 
tion of equilibrium in terms of microscopic properties. 

The details can be found in ref. (26); the essence of the 
calculation and the result is as follows. Working with 
In Z&, T),  one finds the largest term in the sum constituting 
8 In ZJy, T)/arn, where rn is the number of defects in the 
cluster. This term is taken to represent the entire series, in the 
usual manner of dealing with statistical-mechanical expres- 
sions for many-particle systems, and is set equal to zero. The 
second derivative of In Z&, T) is then examined; it must be 
positive if ZJy, 7’) is to show an interior minimum. The form 
given Z,(y, T) by the defect model shows that if the defects 
do not interact with each other, or if they repel, or if they 
raise the energy of the phonons, then there can be no interior 
minimum for Z, ,  but if the defects attract or if they stabilize 
the phonons, then there is a sharply bounded range of tem- 
perature within which both the solid and liquid forms are 
locally stable for any value of N, however large. Naturally, 
the normal expectation for defects would be that they lower 
the energy of phonons and are more likely to attract each 
other than to repel, so one would expect an interior 
minimum for Z ,  to be the commonly encountered situation. 
The value of AT, depends on N but approaches an asymp- 
totic, non-zero value for large N. 

This result allows the identification of the locally stable 
solid and liquid forms of bulk matter as the large-N limits of 

the solid and liquid forms of clusters which, together, are in 
stable equilibrium throughout the coexistence range of tem- 
perature, AT,. The consequent picture of the first-order freezl 
ing and melting transition of bulk matter is that of two 
phases which are, in principle, in equilibrium over the range 
AT,, but despite its continuous character throughout this 
range, the equilibrium ratio changes so sharply that the tran- 
sition appears discontinuous. However, the discontinuities in 
the equilibrium constant persist at the extremities of AT,, 
even though the equilibrium constant at these points is so 
large or so small that the discontinuities become unob- 
servably tiny in any large N system in thermodynamic equi- 
librium. This model, as developed thus far, neglects interfaces 
within a cluster; a treatment that incorporates their effects 
has been given re~ently.~’ 

The only way one can hope to see these discontinuities in a 
macroscopic system is to keep a system trapped in a local 
minimum of the free energy. This corresponds, of course, to 
supercooling a liquid or superheating a solid; the former, at 
least, is well known and well studied. The argument just out- 
lined implies that there is a sharp upper limit in temperature 
to the metastability of a solid and a sharp lower limit to the 
metastability of a liquid; in short, it implies that the spinodal 
curve has sharp upper and lower limits to its solid-side and 
liquid-side branches, respectively. Whether these limits could 
be seen in experiments is open to question because of fluctua- 
tions, which very likely become large as the limits of the spin- 
odal are approached. At the very least, this formulation 
shows that there is a natural reference state of local stability 
around which those fluctuations occur, and that this locally 
stable state can be identified with a well defined, stable state 
of a finite cluster. 
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